
PB96-149778 Information is our business.

PHYSICAL DATABASE DESIGN METHODOLOGY USING
THE PROPERTY OF SEPARABILITY

mm m

STANFORD UNIV., CA

DTic OUT: "T^T n Ti A

MAY 83

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

Approved for public release;
Distribution Unlimited^

May 1983 Report No. STAN-CS-83-968

PB96-149778

A Physical Database Design Methodology Using
the Property of Separability

by

Kyu-Young Whang

Department of Computer Science

Stanford University
Stanford, CA 94305

REPRODUCED BY: NTS
U.S. Department of Commerce

National Technical Information Service
Springfield, Virginia 22161

A Physical Database Design Methodology
Using the Property of Separability

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITrEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Kyu-Young Whang

May 1983

© Copyright 1983

by

Kyu-Young Whang

— 11 -

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy

Gio Wiederhold

(Principal Advisor, Computer Science)

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy

John T. Gill III

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy

Daniel Sagalowicz

(SRI International)

Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies & Research

— in

Abstract

A new approach to the multifile physical database design is presented. Most previous approaches

towards multifile physical database design concentrated on developing cost evaluators for given

designs. To accomplish the optimal physical design, however, these approaches had to rely on the

designer's intuition or on exhaustive search, which is practically infeasible even for moderate-sized

databases.

In our approach we develop a theory called separability to partition the entire database design

problem into collective subproblems. Straightforward heuristics are employed to incorporate the

features that cannot be included in the formal theory. This approach is somewhat formal,

deliberately avoiding excessive reliance on heuristics. Our purpose is to render the whole design

phase manageable and to facilitate understanding of the underlying mechanisms.

We develop a design methodology for relational database systems based on the theory. First, we

set up a basic design phase in accordance with a formal method that includes a large subset of

practically important join methods and then, using heuristics, extend the design procedure to

include other join methods as well.

We show that the theory of separability can be applied to network model databases as well. In

particular, we show that a large subset of practically important access structures that are available in

network model database systems satisfies the conditions for separability.

As an application to the above theory, we propose three physical database design algorithms for

relational database systems. These algorithms have been fully implemented in the Physical Database

Design Optimizer (PhyDDO) in about 6000 lines of Pascal code and tested for their validation. The

results show that the solutions generated by the design algorithms do not significantly deviate from

the optimal solutions. For the implementation of these design algorithms an extensive set of cost

formulas for queries, update, deletion, and insertion transactions have been developed.

IV

Index selection is an important subproblem of physical database design. Index selection

algorithms for relational databases are introduced and tested for their validation. The results show

that these heuristic algorithms do not produce significant deviations from the optimal solutions.

Finally, we introduce a closed noniterative formula for estimating the number of block accesses.

This formula, an approximation of Yao's exact formula, provides significant improvements in both

speed of evaluation and accuracy compared with earlier formulas developed by Yao and Cardenas.

In summary, important issues on multifile physical database design are investigated in this

dissertation. The proposed methodology is consolidated through extensive implementation and

validation procedures. We believe that our approach can enable substantial progress to be made in

the optimal design of multifile physical databases.

- v —

Foreword

This dissertation consists of three components: main chapters, major appendices, and minor

appendices. The major appendices consists of six papers1 that either have been published, accepted,

or submitted for publication. The main chapters are a continuous summary of the research

presented in the major appendices. Some topics that are not fully discussed in the papers are also

included in the main chapters. Appendix A has been published in the Proceedings of the Seventh

International Conference on Very Large Databases, Cannes, France, September 1981, and also has

been submitted for publication to an IEEE journal. Appendix B has been published in the

Proceedings of the Eighth International Conference on Very Large Databases, Mexico City, Mexico,

September 1982. Appendix C has been accepted by the Communications of the ACM. Appendices

D, E, and F have been submitted to publications such as IEEE or ACM Transactions. Minor

appendices (Appendix G to Appendix J) supplement the topics discussed only partially in the main

chapters and appendices. The work described in the first three papers, coauthored by Professor Gio

Wiederhold and Dr. Daniel Sagalowicz, has been performed by the author as part of his dissertation

research under the careful supervision of the two coauthors.

This work was supported by the Defense Advanced Research Project Agency, under the KBMS

Project, Contract No. N39-80-G-0132 and N39-82-C-0250.

*In this report the first three papers arc omitted from the original dissertation since they have already been published

elsewhere.

- VI

To my parents, wife and son

- vii -

Acknowledgments

I am greatly indebted to Professor Gio Wiederhold, my principal advisor, for his careful guidance

and support through my years at Stanford. He introduced me to this field of research and provided

much thoughtful and critical advice on the progress. His full confidence in my work and strong

commitment as a supervisor was the major driving force during the hard years of my dissertation

research. Despite his incredibly busy schedule, he never spared any effort in his personal and

professional support. I am honored to be with him.

I owe a great deal to Dr. Daniel Sagalowicz who supervised my research from the beginning with

constant faith and enthusiasm. The numerous discussions I had with him could not be more

pleasant and more illuminating. His firm confidence in my work and clocklike accuracy in his

advice served as a compass during the sail through the rough sea of uncertainty.

I wish to thank Professor John T. Gill III, my associate and program advisor, for his guidance over

the entire period of my study at Stanford. Especially his advice at the earlier stages of my education

at Stanford was indispensable in establishing the right direction to pursue.

Many research colleagues contributed to forming and refining the ideas of this work. Discussions

with Ramez El-masri and Sheldon Finkelstein were particularly helpful at an earlier stage of the

research. Dr. Paolo Tiberio and Dr. Jerry Kaplan carefully read several of my papers and made

constructive comments. Dr. Mario Schkolnick and Dr. Won Kim read some of my papers and

contributed useful comments. I also received invaluable help from other members of the KBMS

Project: they are Neil Rowe, Jonathan King, Mohammad Olumi, Tom Rogers, Jim Davidson, and

Arthur Keller. I am grateful to Fred Chow who helped me learn the techniques of professional

programming while working together in the S-l Project. I appreciated his brotherly friendship. I

always enjoyed chats with Edwin Pcdnault, my long time office mate. I appreciated the help from

Jaync Pickering in revising the English of all my papers.

— viu —

I also want to thank Mrs. Voy Wiederhole!, Professor & Mrs. McWhorter, Mr. & Mrs. Willards,

and the Watneys for their help, encouragement and friendship.

This dissertation is dedicated to my parents, Sam-Hyun and Young-Hae; my wife, Jung-Hae and

my son, Eui-Jong. To me, throughout my life, their love is fundamental.

IX

Table of Contents

1. Introduction '

1.1 Issues on Physical Database Design 1
1.1.1 Query optimization 2
1.1.2 File modelling and selection 2
1.1.3 Access structure selection 4
1.1.4 Index selection 5

1.2 Objective of the Dissertation 6

2. Theory of Separability 10

3. Separability in Relational Database Systems 14

3.1 Introduction 14
3.2 Approaches and Assumptions 14
3.3 Transaction Evaluation 16

3.3.1 Queries 16
3.3.2 Update transactions 18

3.4 Cost Model of the Storage Structure 19
3.5 Design Theory 21

3.5.1 Cases without coupling effects 22
3.5.2 Cases with coupling effects 26
3.5.3 Formalization 30
3.5.4 Separability in cases where arbitrary indexes are missing 34
3.5.5 Update cost 36

3.6 Summary 36

4. Physical Design Algorithms for Multifile Relational Databases 37

4.1 Introduction 37
4.2 Design Algorithm 37
4.3 Time Complexity of the Design Algorithm 45
4.4 Validation of Design Algorithms 47
4.5 Summary 51

5. Index Selection 52

5.1 Introduction 52
5.2 Index Selection for Single-File Databases 52
5.3 Index Selection when the Clustering Column Exists 54
5.4 Index Selection for Multiple-File Databases 55
5.5 Summary 55

6. Transaction-Processing Costs in Relational Database Systems 56

6.1 Summary 56

7. Estimating Block Accesses in Database Organizations 57

7.1 Summary 57

8. Separability in Network Model Database Systems 58

8.1 Summary 58

— x —

9. Design Algorithms for More-than-Two-Variable Transactions 59

9.1 An Extended Algorithm for Relational Databases 59
9.1.1 The Algorithm 59
9.1.2 Decomposition 60
9.1.3 Discussion 62

9.2 An Extended Algorithm for Network Model Databases 65
9.2.1 Usage transformation functions 65
9.2.2 Number of active records 66
9.2.3 Predicate branch 68
9.2.4 Discussion 70

10. Summary of the Research 73

10.1 Summary 73
10.2 Topics for Further Study 75

Appendix A. Separability - An Approach to Physical Database Design 77

Appendix B. Physical Design of Network Model Databases Using the 78
Propery of Separability

Appendix C. Estimating Block Accesses in Database Organizations 79

Appendix D. Physical Design Algorithms for Multifile Relational Databases 80

D.l Introduction 82
D.2 Assumptions 84
D.3 Transaction Evaluation 85

D.3.1 Queries 85
D.3.2 Update Transactions 87

D.4 Theory of Separability 89
D.5 Design Algorithms 91

D.5.1 Three Algorithms 92
D.5.1.1 Algorithm 1 92
D.5.1.2 Algorithm 2 101
D.5.1.3 Algorithm 3 102

D.5.2 Time Complexities of Design Algorithms 104
D.5.3 Validation of Design Algorithms 105

D.6 Summary and Conclusion 108

Appendix E. Transaction-Processing'Costs in Relational Databases 110

E.1 Introduction 111
E.2 Assumptions and the Model of Storage Structure 113

E.2.1 General Assumptions 113
E.2.2 Storage Structure of the Data File 114
E.2.3 Storage Structure of the Index 114

E.3 Transaction Evaluation 115
E.3.1 Queries 115
E.3.2 Update Transactions 117

E.4 Terminology 118
E.4.1 Notation 118
E.4.2 Definition of Terms 119

E.5 Elementary Cost Formulas 123

— xi -

E.6 Cost Formulas for Processing Transactions 137
E.7 Summary and Conclusion 140

Appendix F. Index Selection in Relational Databases 142

F.l Introduction 143
F.2 Assumptions 145
F.3 Transaction Model 146
F.4 Index Selection Algorithm (DROP heuristic) 150
F.5 Validation of the Algorithm 151
F.6 Index Selection when the Clustering Column Exists 156
F.7 Index Selection for Multiple-File Databases 157
F.8 Summary and Conclusion 158

Appendix G. Relationships between Relations 159

Appendix H. Equivalent Restriction Frequency of a Partial-Join 163

Appendix I. Computational Errors 168

1.1 Comparison of Computational Errors 168
1.2 Computational Error in an Extended Range 173

Appendix J. Supplementary Discussions on Design Algorithms 174

J.l More Details on Design Algorithms 174
J.2 Virtual Columns 176
J.3 More Details on Time Complexities 181
J.4 Analysis of Deviations 183

Appendix K. The Physical Database Design Optimizer- An Implementation 187

References 252

xn

List of Figures

Figure 1-1: Nine Access Configurations. 7
Figure 3-1: General Class of Queries Considered. 16
Figure 3-2: General Class of Update Transactions Considered. 18
Figure 3-3: An Equivalent Form of the General Class of Update Transactions. 19
Figure 3-4: Relations R, and R,. 22
Figure 3-5: COUNTRIES and SHIPS Relations. 26
Figure 3-6: Various Subsets of a Relation. 32
Figure 4-1: Algorithm 1 for the Optimal Design of Physical Databases. 38
Figure 4-2: Algorithm 2 for the Optimal Design of Physical Databases. 48
Figure 4-3: Algorithm 3 for the Optimal Design of Physical Databases. 48
Figure 9-1: Four Relations. The symbol* stands for an N-to-1 relationship. 63
Figure 9-2: An Access Path Tree. 66
Figure 9-3: A Simple Access Path Tree without Any Branch. 67
Figure D-l: General Class of Queries Considered. 85
Figure D-2: General Class of Update Transactions Considered. 87
Figure D-3: An Equivalent Form of the General Class of Update Transactions. 88
Figure D-4: Algorithm 1 for the Optimal Design of Physical Databases. 93
Figure D-5: Algorithm 2 for the Optimal Design of Physical Databases. 94
Figure D-6: Algorithm 3 for the Optimal Design of Physical Databases. 94
Figure E-l: General Class of Queries Considered. 115
Figure E-2: General Class of Update Transactions Considered. 117
Figure E-3: An Equivalent Form of the General Class of Update Transactions. 117
Figure E-4: COUNTRIES and SHIPS relations 119
Figure E-5: Various Subsets of a Relation. 122
Figure F-l: General Class of Queries Considered. 146
Figure F-2: General Class of Update Transactions Considered. 146
Figure F-3: General Class of Deletion Transactions Considered. 146
Figure F-4: General Class of Insertion Transactions Considered. 146
Figure F-5: An Example Input Situation. 155
Figure G-l: Relation Schemes and Their Relationships. 160
Figure G-2: Relation Schemes and Their Relationships. 161
Figure G-3: Relation R3 has 1-to-N Relationships with Rj and R2. 162
Figure J-l: Relations, Connections, Columns, and Virtual Columns. 178
Figure J-2: Access Configurations for R2 and R, at Each Design Step. 184
Figure K-l: An input specification for PhyDDO. 190
Figure K-2: Situations 10,11,12, and their optimal solutions. 195
Figure K-3: Situations 20, 21,22, and their optimal solutions. • 199
Figure K-4: Situations 30, 31, 32, and their optimal solutions. 203
Figure K-5: Situations 40,41,42, and their optimal solutions. 207
Figure K-6: Situations 50, 51, 52, and their optimal solutions. 211
Figure K-7: Situations 60,61,62, and their optimal solutions. 215
Figure K-8: Situations 70,71,72, and their optimal solutions. 251

— xin —

CHAPTER 1. INTRODUCTION

1. Introduction

1.1 Issues on Physical Database Design

The problem of physical database design is concerned with finding designing the underlying

storage structures that support the logical databases. Since a good design of the physical database

has a vital influence on the database performance, the physical design problem has long been an

object of intense research and interest. Typically, the research in this area has been performed in

several directions: file modelling and selection, access structure selection, and index selection. Each

area will be briefly surveyed in the following subsections.

Before proceeding, we define two new terms that play important roles throughout the

development of the thesis. First, we define the term access structures as the features that a particular

database management system (DBMS) provides for the physical database design. For instance,

access structures can be indexes, hashed organization, clustering of the records, etc. Second, we

define the term access configuration of a logical object-such as a relation in relational database

systems, a record type in network model database systems, or an entire database-to mean the

aggregate of access structures specified to support that logical object. Thus, the access configuration

is an abstraction of the physical database.

A related problem that has a significant effect on database performance is query optimization.

Query optimization seeks the optimal sequence of access operations for processing a specific query

given a certain access configuration of the underlying physical database. Since query optimization

has a close relationship with physical database design, we first introduce a short survey on this

subject.

-1-

CHAPTER 1. INTRODUCTION

1.1.1 Query optimization

The query optimization problem has been most often addressed in the context of relational

database systems. The optimizer is a component of a DBMS that automatically translates the

transactions expressed in high-level query languages-such as relational calculus or relational

algebra languages-to an optimal (or suboptimal) sequences of access operations to process the

transactions. In a DBMS having an optimizer the user need not know the physical structure of the

database. Instead, the optimizer estimates the cost of each possible alternative for processing the

transaction based on the given physical structure of the database and figures out the minimum-cost

sequence of access operations. Various algorithms for query optimization have been extensively

studied. Smith and Chang [SMI 75], and Pecherer [PEC 75] studied optimization of transactions

expressed in relational algebra. Various join methods were investigated in [GOT 75], [BLA 76], and

[YAO 79]. Detailed optimization algorithms for some existing database management systems were

also introduced. One for System R [AST 76], based on the modified branch-and-bound technique,

was presented in [SEL 79]. An algorithm for INGRES [STO 76] based on decomposing a

multivariable query into a sequence of one-variable queries was presented in [WON 76]. An

improved version of the INGRES optimization strategy appeared in [KOO 82]. Query optimization

has also been investigated in systems where databases are distributed over multiple processors.

Hcvner and Yao [HEV 79] developed an optimization algorithm for distributed databases using the

optimization criterion of minimizing the data communication cost between different sites. An

optimization strategy for SDD-1 (System for Distributed Databases) using semijoins was presented

in [GOO 79].

1.1.2 File modelling and selection

This problem addresses selecting appropriate file structures for a given collection of records and

user requirements. There are several levels of approach towards this problem. The first level deals

with specific file structures such as ISAM files and their implementations in detail [SEN 69]. The

second deals with specific file structures such as inverted files or multilists, but ignore

-2-

CHAPTER 1. INTRODUCTION

implementation details such as hardware considerations [CAR 75]. The third attempts to model

most of the existing file structures with a unifying model and provides a generalized cost function of

accesses.

The pioneering work in developing unifying models was done by Hsiao and Harary [HSI70] who

formalized the structure of the file as two level structures consisting of a directory and a set of

records. Severance [SEV 75] refined the model by introducing two types of pointers between

elements of the structure: successor pointers and data pointers. Yao [YAO-a 77] subsequently

generalized both models by allowing multilevel directory structure. A unifying model for multifile

databases was developed by Batory [BAT 82]. This model exploits the notion of database

decomposition in which a database is modelled by a set of simple files and a set of link sets

interconnecting these simple files.

In a different approach, instead of using a unifying model of different file structures, Severance

and Carlis [SEV 77] developed a simple taxonomy of various file structures. Using this taxonomy,

appropriate file structures can readily be chosen from the characteristics of the application which is

expressed in terms of average quantity of records retrieved, required speed of response, and volume

of on-line updates.

In most research in file modelling, the emphasis was on developing cost functions that evaluate

the cost of processing transactions acting upon a database having a certain structure. In these

approaches, however, selection of the optimal file structure can only be done according to the

designer's intuition or by trial-and-error. Automatic selection of the optimal file structure for large

multifile databases will be addressed in the next subsection.

3-

CHAPTER 1. INTRODUCTION

1.1.3 Access structure selection

The access structure selection problem addresses finding an access configuration that gives the

best performance. A major premise in this problem is the existence of a database management

system which provides access structures to be utilized in physical database design. In particular, we

are not concerned with designing access structures themselves; it is assumed that they have already

been implemented according to the specific technique employed by the DBMS considered.

A straightforward approach to this problem is to design a cost evaluator that produces the total

cost of processing transactions acting upon a specific access configuration. Using this cost evaluator,

an optimal access configuration can be found by exhaustively searching through all possible access

configurations-by designer's intuition or by trial-and-error. Teorey and Oberlander [TEO 78]

presented a database design evaluator as a design aid to Honeywell's IDS [HON 71]. Gerritsen and

Gambino[GER 77], [GAM 77] developed a database design decision support system based on the

DBTG model [COD 71]. Earlier, similar work on the design support system for network model

databases appeared in [MIT 75] and [DE 78].

In most past research a common problem is that an optimal solution can be found only by

exhaustively searching through all possible access configurations. The number of possible access

configurations, however, can be intolerably large even when a small database is considered. In an

effort to accomplish automatic design of physical database without an exhaustive search, Schkolnick

and Tiberio [SCH 79] developed an algorithm based on partial exhaustive search. A certain number

of intermediate solutions that are best at any design stage are saved, and an exhaustive search is

performed starting from those intermediate solutions to a predefined depth in the search tree. The

same number of best solutions in the results are saved and the procedure is repeated. A physical

database design aid system (DBDSGN)[FIN 82] for system R has been implemented using this

algorithm. One interesting feature of the system is that the algorithm uses System R's own optimizer

as the cost evaluator. The validity of the heuristic involved, however, has not been well established.

-4-

CHAPTER 1. INTRODUCTION

Although this algorithm significantly improves the time complexity compared with the

exhaustive-search approach, it still has a potential of being excessively time consuming when a very

large database is designed. Certainly, a more efficient algorithm needs to be developed. In

subsequent chapters in this dissertation we shall develop a formal method of partitioning the design

problem into disjoint subproblems in order to reduce the time complexity. We then develop

physical database design algorithms based on this formal method. Heuristics are subsequently

employed to further reduce the time complexity.

1.1.4 Index selection

The index selection problem is an interesting subproblem of the access structure selection

problem. The problem is concerned with finding an optimal set of indexes that minimizes the total

transaction-processing cost. There has been a significant research effort on this problem. A

pioneering work based on a simple cost model appeared in [LUM 71]. Some approaches [KIN

74], [STO 74] attempted to formalize the problem in order to find analytic results in certain restricted

cases. In a more theoretical approach Comer [COM 78] proved that even a simplified version of the

index selection problem is NP-complete. Thus, the best known algorithm to find an optimal

solution would have an exponential time complexity. In an effort to find a more efficient algorithm,

Schkolnick [SCH 75] discovered that, if the cost function satisfies a property called regularity, the

complexity of the optimal index selection can be reduced to less than exponential. Hammer and

Chan [HAM 76] took a somewhat different approach and developed a heuristic algorithm that

significantly reduced the time complexity.

Most previous approaches towards optimal index selection, however, are limited to single-file

cases. Furthermore, they only deal with secondary indexes without considering indexes coupled to

the primary structure (clustering) of the file. Solutions for multifile cases or for the cases in which

the primary structure is incorporated will be presented in Chapter 5.

-5-

CHAPTER 1. INTRODUCTION

1.2 Objective of the Dissertation

In this dissertation we concentrate on the access structure selection problem among the issues on

physical database design surveyed in Section 1.1. In addition, the index selection problem will be

studied as a subproblem of the access structure selection problem. In other words, we consider the

problem of selecting the optimal access configuration of a database using the access structures that a

particular DBMS we have at hand provides for the physical database design. The file modelling

problem will not be explicitly considered; but, the techniques for solving this problem could help

the implementation of the access structures themselves which we assume are already available.

Hence, from now on, we consider the physical database design as a synonym for the access structure

selection.

Most of previous research on physical database design concentrated on developing a cost

evaluator, and selection of optimal access configuration remained dependent on the designer's

intuition or an exhaustive search through all possible access configurations. Although an exhaustive

search guarantees finding an optimal solution, it is practically impossible even with a small-sized

database. This point is illustrated in Example 1.1.

Example 1.1: We look into a very simplified design process of a small database based on an

exhaustive-search algorithm. We assume that the only access structure available is the clustering

property. A column is said to have the clustering property, if a relation is stored according to the

order of the column values. Although the clustering property can be assigned to a combination of

multiple columns, in this example, we assume for simplicity that it can be assigned only to a single

column.

Using this access structure, for a given set of transactions as input information, we want to find an

optimal access configuration for the database consisting of relations Rj and R2 each of which owns

two attributes. We have nine possible access configurations as in Figure 1-1, in which dashed lines

show the position of the clustering column.

-6-

CHAPTER 1. INTRODUCTION

A2 Aj B! B2 A2 At B, B2

1 / 1
1 / 1
1 / 1

1 / 1
1 / 1
1 / 1

1 / 1
1 / 1
1 / 1

1 / 1
1 / 1
1 / 1

Rl

A2 Al

R2

Bi B2

Rl

A2 Al

R2

Bi B2

1 / 1
1 / 1
1 / 1

1 1
1 1
1 1

1 / 1
1 ' / 1
1 / 1

1 / 1
1 / 1
1 / 1

A2 Al
B! B2 A2 Aj B! B2

1 / 1
1 / 1
1 / 1

1
1
1

/ 1
/ 1
/ 1

1 / 1
1 / 1
1 / 1

1 1
1 1
1 1

Rl R2 Rl R2

A2 Ax Bl B2
A2 Al

Bi B2

1 1
1 1
1 1

1 /
1 /
1 /

1
1
1

1 1
1 1
1 1

1 / 1
1 / 1
1 / 1

Rl R2 Rl R2

A2 Aj Bl B2

I I

I I

Figure 1-1: Nine Access Configurations.

The optimal access configuration can be found as follows:

-7

CHAPTER 1. INTRODUCTION

1. for each of the nine configurations:

1.1. find the best join method for each query

1.2. obtain the total processing cost

2. select the configuration that yields the minimum processing cost

In this simple design example, we have only nine possible access configurations; but the number

of access configurations is explosive if we have more relations, more attributes in a relation, and

various kinds of access structures such as the clustering property, indexes, links, etc. For instance, if

we have five relations having five attributes each, with indexes and the clustering property as

available access structures, the number of possible access configurations becomes

(6X6X6X6X6) X (25X25X25X25X25) = 2.6 X 1011 D

As we see in Example 1, the cost of the exhaustive-search method becomes intolerably high even

with a very small database. As pointed out in [GER 77], a relevant partitioning of the entire design

is necessary to make the optimal design of physical databases a practical matter.

In this dissertation we shall develop a methodology for the design of multifile physical databases

so that it can be applied to many situations with reasonable efficiency and accuracy. In particular,

we discuss the issues involved in designing the access configuration of a physical database so as to

minimize the total processing cost of in nut transactions-including queries and update transactions.

In calculating the processing cost we only consider the number of I/O accesses; the cost due to the

CPU time is not included. Our approach is somewhat formal and mathematical, deliberately

avoiding excessive reliance on heuristics. Our purpose is to render the whole design phase

manageable and to facilitate understanding of underlying mechanisms.

We proceed by first developing a design theory called separability that enables us to partition the

entire design problem into disjoint subproblcms. We then show that important subsets of features

-8

CHAPTER 1. INTRODUCTION

provided by both relational and network model database systems satisfy the conditions for

separability. Thus, if features are restricted to these subsets, the optimal design of access

configurations of multifile databases can be reduced to the collective optimal designs of smaller

objects. In principle, these smaller objects, which we call logical objects, can be any subsets of the

database being designed. However, in practice, the most convenient partition would be the set of

individual relations for relational systems or record types for network model database systems.

According to the theory, a basic design is obtained by using only features that satisfy the conditions

for separability. This basic design is then extended, using some straightforward heuristics, to include

other features provided by database management systems.

In Chapter 2 we develop the skeleton of the theory of separability and prove the separability

theorem. We then investigate, in Chapter 3, how the theory can be applied to relational database

systems. The application of the theory to network model database systems is presented in Chapter 8.

Physical database design algorithms for multifile relational databases that are based on the theory

and extended by heuristics are presented in Chapter 4. The index selection problem is an important

subproblem of the physical database design problem. For this reason it is given a separate

consideration in Chapter 5. The algorithms developed in Chapter 4 are fully implemented in 6000

lines of Pascal code. The cost formulas used in the implementation are summarized in Chapter 6. In

developing cost formulas the function that estimates the number of block accesses when randomly

selected tuples are retrieved in their physical order plays a particularly important role. The exact

form of this function and various approximation formulas for faster evaluation are summarized in

Chapter 7. Finally, briefly discussed in Chapter 9 are extensions of the design algorithms to the

transactions that involve morc-than-two variables.

CHAPTER! THEORY OF SEPARABILITY

2. Theory of Separability

The complexity of the physical database design stems from the interaction among the individual

logical objects in the process of physical design. This interaction among logical objects prevents us

from designing the access configurations of individual logical objects independently of one another

because the optimal access configuration of a logical object is dependent on the access configurations

of other logical objects.

A major cause of this interaction, in turn, is the join operation in relational databases or the SET

traversal in network model databases (we shall simply call these two operations as the join

operation). The cost of a join operation depends on access configurations of all logical objects

participating in the join. Accordingly, we cannot determine die optimal access configuration of a

particular logical object without the knowledge on the optimal access configurations of other logical

objects. Similarly, the optimal configurations of other logical objects may depend on this particular

logical object. Thus, we conclude that, in the most general cases, the only possible approach is to

design the optimal configurations of all the logical objects simultaneously. But, as shown in

Example 1.1, the complexity of this approach is intolerable.

However, we shall show in this chapter that, given a certain set of restrictions, the problem of

optimally designing the access configuration of the entire database can be reduced to the

subproblems of optimizing individual logical objects in the database independently of one another.

The theorem of separability presented below formalizes this idea. Before introducing the theorem

we need the following definitions.

Definition 2.1: The procedure of designing the optimal access configuration of a database is

separable if it can be decomposed into the tasks of designing the optimal configurations of individual

logical objects independently of one another. D

-10-

CHAPTER 2. THEORY OF SEPARABILITY

Definition 2.2: A partial-operation cost of a transaction is the part of the transaction processing

cost that corresponds to the access to only one logical object, as well as of the auxiliary access

structures defined for it. D

Definition 2.3: A partial operation is a conceptual division of the transaction whose processing cost

is a partial-operation cost. D

Theorem 2.1: (Separability) The procedure of designing the optimal access configuration of a

database is separable if the following conditions are satisfied:

1. The partial-operation cost of a transaction for a logical object is independent of both the
access configuration specified and the partial operations used for the other logical
objects.

2. A partial operation for a logical object can be chosen regardless of the access
configuration specified and the partial operations used for the other logical objects.

3. Access structures for a logical object can be chosen independently of access
configurations of the other logical objects.

Proof: Condition 2 states that, in selecting a partial operation of a transaction for a logical object,

we are constrained neither by the access configurations of the other logical objects nor due to the

partial operations used for them. Similarly, Condition 3 says that we are free to choose any access

structures for a logical object regardless of the access structures chosen for the other logical objects.

Furthermore, from Condition 1, a partial-operation cost of a transaction for a particular logical

object, given a specific access configuration of the logical object, is affected neither by the access

configurations of the other logical objects nor due to the partial operations used for them.

Therefore, the partial operation cost of a transaction for a logical object is in no way affected by

design decisions-choices of access structures and partial operations —of the other logical objects;

nor do design decisions of a logical object affect the partial operation costs of transactions for the

other logical objects. Thus, we can design individual logical objects independently of one another.

Q.E.D.

-11-

CHAPTER 2. THEORY OF SEPARABILITY

Many database management systems satisfy Condition 3 in the sense that they do not put any

restrictions in assigning access structures to different logical objects so that we can choose any access

structures for a logical object regardless of the access structures assigned to other logical objects.

Therefore, from now on, we exclude Condition 3 from our consideration.

Condition 1 is easy to check if we have specific cost formulas, but is somewhat difficult otherwise.

In this case we define the following conditions which are sufficient and easier to check.

Sufficient conditions for Condition 1: The three items below are independent of the access

configurations specified for the other logical objects and the partial operations used for the other

logical objects.

1.1. Cardinality of the set of records accessed in the partial operation

1.2. The order according to which these records are accessed

1.3. Relative placement of these records in the storage medium

The partial operation cost of a transaction for a logical object, which represents the cost of

accessing the set of records selected for this logical object, can be determined from these three items

because they specify the number of records to be accessed, the locations of the records in the storage

medium and the order of accessing those records. Thus, Conditions 1.1,1.2, and 1.3 together form a

sufficient condition for Condition 1 in Theorem 2.1 since they state that the three items in a logical

object, and accordingly die partial operation cost of a transaction, are independent of the design

decisions for the other logical objects. Note that these conditions are not necessary conditions

because, although very unlikely, partial operation costs could be the same even though one the

conditions is not satisfied.

We have now stated the conditions for separability in Theorem 2.1. Since Condition 3 is usually

satisfied by database management systems, we consider only Conditions 1 and 2 in subsequent

chapters. Three sufficient conditions for Condition 1 for separability have been presented.

12-

CHAPTER! THEORY OF SEPARABILITY

Condition 1 will be substituted by these sufficient conditions whenever specific cost formulas are not

available.

-13-

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

3. Separability In Relational Database
Systems

3.1 Introduction

In this chapter and Appendix A we investigate how the theory outlined in Chapter 2 can be

applied to relational database systems. Appendix A is a preliminary version of this chapter as is

published in the Proceedings of the Seventh International Conference on Very Large Databases held

in Cannes, France, in September 1981. We shall prove that a set of join methods which are

important in practice satisfies the conditions for separability. The implication is that, if the available

join methods are restricted to this set, the optimal design of the access configuration of a multifile

database can be reduced to the collective optimal designs of individual relations. The physical

designs thus obtained will be extended, using some straightforward heuristics, to incorporate other

join methods as well. This extension will be discussed in Chapter 4.

Section 3.2 introduces major assumptions, while Section 3.3 describes applicable join methods of

interest. In Section 3.5 we analyze those join methods and proves that an important subset has the

separability property. We first proceed by presenting a series of case analyses using the simple cost

model introduced in Section 3.4 and defining necessary terms. The ideas thus obtained are

summarized in Subsection 3.5.3.

3.2 Approaches and Assumptions

We assume that the DBMS we consider provides as access structures indexes and the clustering

property of a single relation. Clustering of two or more relations, as is supported in many

hierarchical organizations, is not considered.

The database is assumed to reside on disklike devices. Physical storage space for the database is

divided into units of fixed size called blocks [WIE 83]. The block is not only the unit of disk

-14-

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

allocation, but is also the unit of transfer between main memory and disk. We assume that a block

that contains tuples of a relation contains only tuples ofthat relation. Furthermore, we assume that

the blocks containing tuples of a relation can be accessed serially. However, the blocks do not have

to be contiguous on the disk.1 For simplicity, we assume that a relation is mapped into a single file.

Accordingly, from now on, we shall use the terms file and relation interchangeably; nor shall we

make any distinction between an attribute and a column or between a tuple and a record.

We shall develop a simple cost model of the storage structure in Section 3.4, and shall use various

cost formulas based on this model for case studies. We assume that no block access will be incurred

if the next tuple (or index entry) to be accessed resides in the same block as that of the current tuple

(or index entry); otherwise, a new block access is necessary. We also assume that all TID (tuple

identifier) manipulations can be performed in main memory without any need for I/O accesses.

We consider only one-to-many (including one-to-one) relationships between relations. It is

argued in Appendix G that many-to-many relationships between relations are less important for the

optimization purpose. Note that here we are dealing with relationships in relational representations

based on the equality of join-attribute values; a many-to-mariy relationship among distinct entity

sets at the conceptual level is often structured with an additional intermediate relation [ELM 80].

Finally, we are considering only one-variable or two-variable queries in this chapter. For a query

of more than two variables, a heuristic approach can be employed to decompose it into a sequence of

two-variable queries (These correspond to one-overlapping queries in [WON 76]). The

decomposition approach will be discussed in Chapter 9.

For example, blocks of a file can be spread over the disk while they are connected as a linked list or linked implicitly by a
file map.

-15-

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

3.3 Transaction Evaluation

3.3.1 Queries

The class of queries we consider is shown in Figure 3-1. The conceptual meaning of this class of

queries is as follows. Tuples in relation RL are restricted by restriction predicate Pr Similarly,

tuples in relation R2 are restricted by predicate Pr The resulting tuples from each relation are

joined according to the join predicate RrA = R2.B, and the result projected over the columns

specified by <list of attributesX We call the columns that are involved in the restriction predicates

restriction columns, and those in the join predicate join columns. The actual implementation of this

class of queries does not have to follow the order specified above as long as it produces the same

result

SELECT <listofattributes>
FROM Rr R2

WHERE RrA = R2.B AND
P1 AND
P2

Figure 3-1: General Class of Queries Considered.

Query evaluation algorithms, especially for two-variable queries, have been studied in [BLA 76]

and [YAO 79]. The algorithms for evaluating queries differ significantly in the way they use join

methods. Before discussing the various join methods, let us define some terminology. Given a

query, an index is called a join index if it is defined for the join column of a relation. Likewise, an

index is called a restriction index if it is defined for a restriction column. We use the term subluple

for a tuple that has been projected over some columns. The restriction predicate in a query for each

relation is decomposed into the form Qx AND Q2, where Q1 is a predicate that can be processed by

using indexes, while Q2 cannot. Q2 must be resolved by accessing individual records. We shall call

Q. the index-processible predicate and Q2 the residual predicate.

16-

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

Some algorithms for processing joins that are of practical importance are summarized below (see

also[BLA76][SEL79]):

• Join Index Method: This method presupposes the existence of join indexes. For each
relation, the TIDs of tuples that satisfy the index processible predicates are obtained by
manipulating the TIDs from each index involved; the resultant TIDs are stored in
temporary relations Rj' and R2'. TID pairs with the same join column values are found
by scanning the join column indexes according to the order of the join column values.
As they are found, each TID pair (TID1, TID2) is checked to determine whether TIDX is
present in R1' and TID2 in R2'. If they are, the corresponding tuple in one relation, say
R,, is retrieved. When this tuple satisfies the residual predicate for R^ the corresponding
tuple in the other relation R2 is retrieved and the residual predicate for R2 is checked. If
qualified, the tuples are concatenated and the subtuple of interest is constructed. (We
say that the direction of the join is from Rx to R2<)

• Sort-Merge Method: The relations Rj and R2 are scanned-either by using restriction
indexes, if there is an index-processible predicate in the query, or by scanning the
relation directly. Restrictions, partial projections, and the initial step of sorting are
performed while the relations are being initially scanned and stored in temporary
relations Tx and T2. T1 and T2 are sorted by the join column values. The resulting
relations are scanned in parallel and the join is completed by merging matching tuples.

• Combination of the Join Index Method and the Sort-Merge Method: One relation, say
Rl, is sorted as in the sort-merge method and stored in Tr Relation R2 is processed as in
the join index method, storing the TIDs of the tuples that satisfy the index processible
predicates in R2'. T, and the join column index of R2 are scanned according to the join
column values. As matching join column values are found, each TID from the join
index of R2 is checked against R2'. If it is in R2', the corresponding tuple in R2 is
retrieved and the residual predicate for R2 is checked. If qualified, the tuples are
concatenated and the subtuple is constructed.

• Inner/Outer-Loop Join Method: In the two join methods described above, the join is
performed by scanning relations in the order of the join column values. In the
inner/outer-loop join, one of the relations, say Rp is scanned without regard to order,
either by using restriction indexes or by scanning the relation directly. For each tuple of
R1 that satisfies predicate P1, all mples of relation R2 that satisfy predicate P2 and the
join predicate are retrieved and concatenated with the tuple of Rr The subtuples of
interest are then projected upon the result. (We say the direction of the join is from R, to
Rr)

Let us note that, in the combination of the join index method and the sort-merge method, the

operation performed on either relation is identical to that performed on one relation in the join

index method or in the sort-merge method. We call the operations performed on each relation join

index method (partial) or sort-merge method (partial), respectively; whenever no confusion arises, we

-17-

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

call these operations simply join index method or sort-merge method. According to these definitions,

the complete join index method actually consists of two join index methods (partial) and, similarly,

the complete sort-merge method consists of two sort-merge methods (partial).

3.3.2 Update transactions

We assume that the updates are performed only on individual relations, although the qualification

part (WHERE clause) may involve more than one relation. Thus, updates are not performed on the

join of two or more relations. (If they are, certain ambiguity arises on which relations to update

[KEL 81].) The class of update transactions we consider is shown in Figure 3-2.

UPDATE Rx

SET RrC = <new value>
FROM Rr R2

WHERE RrA = R2.B AND
Px AND
P2

Figure 3-2: General Class of Update Transactions Considered.

The conceptual meaning of this class of transactions is as follows. Tuples in relation R, are

restricted by restriction predicate ?T Let us call the set of resulting tuples T2. Then, the value for

column C of each tuple in Ri is changed to <new valuc> if the tuple satisfies the restriction predicate

Px and has a matching tuple in T2 according to the join predicate. In a more familiar syntax [CHA

76], the class of update transactions can be represented as in Figure 3-3. The equivalence of the two

representations has been shown for queries in [KIM 82].

Deletion transactions are specified in an analogous way. It is assumed that insertion transactions

refer only to single relations. From now on, unless any confusion arises, we shall refer to update,

deletion or insertion transactions simply as update transactions.

The update transaction in Figure 3-2 can be processed just like queries except that an update

18-

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

UPDATE Rj
SET R..C = <new value>
WHERE P1 AND

RrA IN
(SELECT R2.B
FROM R2

WHERE P2)

Figure 3-3: An Equivalent Form of the General Class of Update Transactions,

operation is performed instead of concatenating and projecting out the subtuples after relevant

tuples are identified. In particular, all the join methods described in Section 3.3.1 can be used for

update transactions as well to resolve the join predicates (ones that relate the two relation) that they

have. But, there are two constraints: 1) The sort-merge method cannot be used for the relation to be

updated since it is meaningless to create a temporary sorted file to update the original relation. 2)

When the inner/outer-loop join method is used, the direction of the join must be from the relation

to be updated (Rx) to the other relation (R2) because, if the direction were reversed, the same tuple

might be updated more than once.

3.4 Cost Model of the Storage Structure

To calculate the cost of evaluating a query, wc need a proper model of the underlying storage

structure and its corresponding cost formula. Although the theory does not depend on the specifics

of cost models, it is helpful to have a simple cost model for illustrative purposes.

We assume that a B+-tree index [BAY 72] can be defined for a column or for a set of columns of a

relation. The leaf-level of the index consists of pairs (key and TID) for every tuple in that relation.

The leaf-level blocks arc chained according to the order of indexed column values, so that the index

can be scanned without traversing the index tree. Entries having the same key value are ordered by

TID.

An index is called a clustering index if the relation for which this index is defined is physically

-19-

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

clustered according to the index column values. With a clustering index, we assume that no block is

fetched more than once when tuples with consecutive values of the indexed column are retrieved.

Except for this ordering property, no other difference in the structure is assumed between a

clustering and a nonclustering index. The clustering property can greatly reduce the access cost.

Unfortunately, only one column of a relation can have the clustering property, since clustering

requires a specific order of records in the physical file. One of the objectives of designing optimal

physical databases is to determine which column will be assigned the clustering property.

The access cost will be measured in terms of the number of I/O accesses. The following notation

will be used throughout this chapter:

R : A relation.
Other(R) : The relation to be joined with R.
C : A column.
nR : Number of tuples in relation R (cardinality).
pR : Blocking factor of relation R.
Lc : Blocking factor of the index for column C.
Fc : Selectivity of column C or its index
cc : Subscript for the clustering column.
mR : Number of blocks in relation R, which is equal to nR/pR.
imc : Number of blocks that the index for column C occupies.
t : A transaction
H R : Projection factor of transaction t on relation R.

By using the simplified model above, the cost of various operations can be obtained as follows:

• Relation Scan Cost - Cost for serially accessing all the blocks containing the tuples of a
relation:

RS(R) = nR/pR = mR *

• Index Scan Cost — Cost for serially accessing the leaf- level blocks of an entire index:

IS(I.R) = rnR/Lcl

• Index Access Cost — Cost for one access of the index tree from the root:

IA(I,R) = riogL nRl + [Fc X nR/Lcl

• Sorting Cost - Cost for sorting a relation, or a part thereof, according to the values of
the columns of interest:

SORT(NB) = 2 X fNB1 f 2 X [NB] X [logz fNB"|l

-20-

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

Here we assume that a z-way sort-merge is used for the external sort [KNU-b 73]. NB is
the number of blocks in the temporary relation containing the subtuples to be sorted
after restriction and projection have been resolved. It will be noted that SORT(NB) does
not include the initial scanning time to bring in the original relation, while it does
include the time to scan the temporary relation for the actual join after sorting (see [BLA
76]).

3.5 Design Theory

In this section we investigate the property of separability for relational database systems. In

particular, we shall prove that the set of join methods consisting of the join index method, the

sort-merge method, and the combination of the two satisfies the conditions for separability under

certain constraints. The inner/outer-loop join method is a nonseparable join method with respect to

this separable set. The design algorithms will be extended to incorporate this join method in

Chapter 4. We facilitate comprehension through a series of examples and by case analysis, using the

cost model developed in Section 3.4. Observations resulting from this procedure are formalized and

proved in Section 3.5.3.

Our approach to physical database design is based on the premise that at execution time the query

processor will choose the best processing method for a given query. We call this processor an

optimizer. Since the behavior of the optimizer at execution time affects the physical database design

critically, we investigate this issue and discuss how it is related to the design.

We define the influence of the restriction on one relation to the number of tuples to be retrieved

in the other relation participating in a join as the coupling effect (which is similar in concept to the

feedback mentioned in [YAO 79]). Starting with a case in which coupling effects between relations

are not considered, we then proceed to those cases in which they are included.

-21 -

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

3.5.1 Cases without coupling effects

Example 3.1: Figure 3-4 describes two relations Rx and R2 with their access configurations.

Dashed lines (/) represent clustering indexes, the dotted lines (:) nonclustering indexes. Columns

without either type of line have no indexes defined for them. We would like to find the best method

of evaluation-which the optimizer would choose at query-processing time, for the following query:

SELECT Ar A2, B2

FROM Rr R2

WHERE RrA2 = 'a2' AND

R2.B2 = 'b2' AND

Ml = R2Bl

A3 A2 Al

JOIN

Bl

1 /
1 /
1 /

h B3

1 /
1 /
1 /

: 1
: 1
: 1

1
1
1

Figure 3-4: Relations Rx and R2.

For this example only, it is also assumed that all the tuples in each relation participate in the join.

Given these assumptions, the optimizer could try all the possible combinations of the join

methods, evaluate the cost of each, and then select the one that costs the least. We have here the

following combinations:

Ri

1. Join index method (partial)

2. Sort-merge method (partial)

3. Join index method (partial)

4. Sort-merge method (partial)

R2

and Join index method (partial)

and Sort-merge method (partial)

and Sort-merge method (partial)

and Join index method (partial)

Using the cost model given in Section 3.4, the following formulas give the cost (number of block

-22-

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

accesses) for each of the four cases above. In each formula the first and second bracketed

expressions represent the cost of accessing relations Rr and R2 respectively. Bracketed expressions

in the formulas are given arbitrary values for illustrative purposes. Those expressions whose form is

identical are given the same value.

Cost = [IA(IA2, Rx) + IS(IA1, Rx) + FA2 X nR1] + : 100 +

[IA(IB2, R2) + IS(IB1, R2) + b(mR2, pR2, FB2 X nR2)] : 20 (3.1)

Cost = [IA(IA2, Rx) + FA2 X mR1 + SORT(FA2 X HR1 X mR1)] + : 60 +

[IA(IB2> R2) + b(mR2, PR2, FB2 X nR2) + SORT(Fß2 X HR2 X mR2)] : 50 (3.2)

Cost = [IA(IA2, Rx) + IS(IA1, Rx) + FA2 X nR1] + *: 100 +

[IA(IB2, R2) + b(mR2, pR2, FB2 X nR2) + SORT(FB2 X HR2 X mR2)] : 50 (3.3)

Cost = [IA(IA2, Rx) + FA2 X mR1 + SORT(FA2 X HR1 X mR1)] + : 60 +

[IA(IB2,R2) + IS(IB1,R2) + b(mR2,pR2,FB2XnR2)] : 20 (3.4)

Here b(m,p,k) is a function that provides the number of block accesses, where k is the number of

tuples to be retrieved in the order of TID values (TID order). An exact form of this function and

various approximation formulas are summarized in Chapter 7. The function is approximately linear

in k when k « n, and approaches m asymtotically as k becomes large. A simple approximation

suggested by Cardenas [CAR 75] is b(m,p,k) = m [1 - (l-l/p)k]. FA2 and Fß2 are the sclectivities

of the columns RrA2 and R2-B2, respectively. In Equation (3.1), FA2 X nR1 and KmR2,pR2'FB2 *

nR2) represent the numbers of blocks accessed that contain data tuples of relations Rx and R2,

respectively. Since retrieving tuples by scanning a nonclustering join index will access the tuples

randomly, the same block will be accessed repeatedly if it contains more than one tuple. Therefore,

one block access is needed to retrieve each tuple. Hence we get FA2 X nR1 for the number of data

blocks fetched from relation Rr On the other hand, for relation R2, the join index is clustering and

thus the tuples will be retrieved in TID order. Therefore, even though a block contains more than

one tuple, each block will be fetched only once. We thus get b(mR2,pR2,Fß2 X nR2) for the number

of data blocks fetched from R2, where Fß2 X nR2 is the number of tuples selected by the restriction.

-23-

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

In Equation (3.2), FA2 X mR1 and b(mR2,pR2,FB2 * nR2) represent the numbers of blocks

accessed during the initial scan of the relation prior to sorting. Since the restriction index is

clustering in relation Rr the initial scan through this restriction index will access F.2 X mR1 blocks.

In relation R2, a nonclustering restriction index is used to access the relation initially. This

restriction results in random distribution of TIDs of the qualified tuples over the blocks. Since these

tuples are then accessed in TID order, the access cost is b(mR2,pR2,FB2 X nR2).

The factor HR2 used in the Equation (3.3) represents the projection effect upon relation R2. Since

the projection selects only part of the attributes from the relations, the tuple is usually smaller after

projection. The cost of writing the final result is not included since it is the same regardless of the

join method used.

With the specific values of the access cost given, Equation (3.4) gives the minimum access cost.

We note that the access costs for each relation do not depend on any parameter of any other relation,

and that each part of the cost of Equation (3.4) becomes the local minimum. That is, the first part of

the cost incurred by accessing relation 1^ is the minimum of the costs of the join methods used for

Rj, while the second part is the minimum of those for R2. This implies that the optimizer can

determine the optimal join method on one relation without regard to any properties of other

relations. [END Example 3.1]

The foregoing observation is extremely important because, if we can determine the optimal join

method for one relation without regard to other relations, we can also determine the optimal access

configuration for the relation without regard to other relations using the following procedure:

1. Consider each possible access configuration for a relation in turn.

2. Find the best join method of each transaction given the particular access configuration.

3. Calculate the total cost for processing the transactions, using their expected frequency of
occurrence.

4. Repeat this procedure for all other possible access configurations, finally selecting the
one that yields the minimal total cost.

-24-

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

The result of this will be to reduce the problem of designing an optimal access configuration of a

database to the problem of designing access configurations of single relations. Therefore, local

optimal solutions for individual relations constitute an optimal solution for the entire database.

In Example 3.1 we considered only the cases without coupling effects. It will be shown, in the

following discussion, that the problem is similarly reduced even when coupling effects are actually

present Before further discussion, we need the following definition and example.

Definition 3.1: The join selectivity J(R,JP) of a relation R with respect to a join path JP is the ratio

of the number of distinct join column values of the tuples participating in the unconditional join to

the total number of the distinct join column values of R. A join path is a set (RpR^.R^R^B),

where R, and R, are relations participating in the join and RrA and R2.B are the join columns of Rj

and R-, respectively. An unconditional join is a join in which the restrictions on either relation are

not considered. D

Definition 3.2: A connection is a join path predefined in the schema [WIE 79]. D

Join selectivity is the same as the ratio of the number of tuples participating in the unconditional

join to the total number of tuples in the relation (cardinality of the relation). Join selectivity is

generally different in Rx and R2 with respect to a join path, as shown in the following example:

Example 3.2: Let us assume that the two relations in Figure 3-5 have an 1-to-N partial-

dependency relationship. Partial dependency means that every tuple in the relation R2 that is on the

N-side of the relationship has a corresponding tuple in R^ but not vice versa [ELM 80]. Let us

assume that 50% of the countries have at least one ship so that the tuples representing those

countries participate in the unconditional join. Every tuple in the SHIPS relation (R2) participates

in the unconditional join according to the partial dependency. The join selectivity of the

COUNTRIES relation is then 0.5, while that of the SHIPS relation is 1.0. D

-25-

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

Rx COUNTRIES(Countryname, Population)

R2 SHIPS(ShipId, Country, Crewsize, Deadweight)

Figure 3-5: COUNTRIES and SHIPS Relations.

3.5.2 Cases with coupling effects

Let us investigate the four cases shown in Example 3.1-using the same query, join methods, and

access configuration defined as in Figure 3-4, but now with coupling effects. In fact, we shall

consider coupling effects throughout our subsequent discussions. We shall also assume that Rx and

R2 have a 1-to-N relationship (1 for Rx and N for R2).

Case 1: The join index method is applied to both relations ^ and R2. With coupling effect, the

join will be performed as follows: If a tuple of relation Rx docs not satisfy the restriction predicate

for R,, the corresponding tuples of R2 that have the same join column values are not accessed.

Hence, we have the coupling effect from Rx to R2. If there are only index-processible predicates in

the query to be evaluated, the situation is then symmetric-in the sense that, for the tuples in

relation R2 that do not satisfy the restriction predicate for R2, the corresponding tuples of Rj^ are not

accessed either. We have this symmetry because we can resolve all index-processible predicates by

using TIDs only, without any need to access the data tuples themselves.

Since both R,.A2 and R2-B2 have indexes defined for them, the restriction predicates in the

WHERE clause are index-processible. Therefore, the cost of evaluating this query, including the

coupling effect, will be as follows:

Cost = [IACI^.R^ + IS(IA1,R1) + {<JX X b(l/FB1,FB1 X nR2,

FB2 X nR2)/(l/Fm)> XFWX nR1}] +

[IA(IB2,R2) + IS(IB1,R2) + b(mR2,pR2,{<J2 X FA2> X Fß2 X nR2»]

Here Jx and J2 represent the join selectivity of relations Rx and R2, respectively, for the join path

considered. Expressions in the braces represent the numbers of data tuples accessed in relations Rj^

26-

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

and R2, respectively. In the first part of the formula, the expression in the braces simultaneously

represents the number of blocks accessed in relation Ry This follows the argument shown in

Example 3.1.

FB1 is the selectivity of column R2.B1 and 1/Fßl represents the number of groups2 of tuples that

have the same join column values in relation R2~ which is essentially the same as the number of

distinct join column values.

The expression b(l/FB1,FB1 X nR2, Fß2 X nR2) represents the number of groups selected by

restriction Fß2. Although the b function estimates the number of block accesses in which a certain

number of tuples are randomly selected, the same function is used for estimating the number of

logical groups selected-if the latter are assumed to be of uniform size. Note that the clustering or

nonclustering of tuples in a group is irrelevant. The product Fßl X nR2 , the number of tuples in

one logical group, plays a role similar to that of the blocking factor.

The expression b(l/Fßl, Fßl X nR2, Fß2 X nR2)/(l/Fßl) represents the ratio of the number of

groups selected by restriction Fß2 to the total number of groups in relation R2. Since every tuple

participating in the unconditional join in R1 has a unique join column value and, accordingly,

exactly one corresponding group in R2 (let us recall that Rj is on the 1-side of the 1-to-N

relationship), this ratio correctly represents a special restriction upon Rx caused by the coupling

effect originating in R2.

In the second part of the cost formula, we simply use FA2 to represent the coupling effect directed

from R, to R,. Since in R, every tuple has a unique join column value, if a tuple is selected

according to the restriction, the corresponding group in R2 that has the same join column value (if it

exists) will be selected on the basis of this special restriction resulting from the coupling effect

2
Group here is very close in concept to set occurrence in CODASYL-type databases.

-27-

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

Hence, F., represents the ratio of the number of groups selected as a consequence of the coupling

effect to the total number of groups in R2 participating in the unconditional join. That ratio, in turn,

has the same value as the ratio of tuples, selected according to the coupling effect, to the total

number of tuples participating in the unconditional join in R2. D

The coupling effect is formally defined as follows:

Definition 3.3: The coupling effect from relation Rx to relation R2, with respect to a transaction, is

the ratio of the number of distinct join column values of the records of Rr selected according to the

restriction predicate for R,, to the total number of distinct join column values in Rr D

If we assume that the join column values are randomly selected, the coupling effect from Rx to R2

is the same as the ratio of the number of distinct join column values of R2 selected by the effect of

the restriction predicate for R, to the number of distinct join column values in R2 participating in

the unconditional join.

Definition 3.4: A coupling factor Cf,2 from relation R, to relation R2, with respect to a transaction,

is the ratio of the number of distinct join column values of R2, selected by both the coupling effect

from R, (through the restriction predicate for Rj) and the join selectivity of R2, to the total number

of distinct join column values in R2. D

According to the definition, a coupling factor can be obtained by multiplying the coupling effect

from R, to R2 by the join selectivity of R2. This coupling factor contains all the consequences of the

interactions of relations in the join operation, since it includes both coupling and join filtering

effects. Let us note that, although the coupling factor can be obtained in any case, it does not always

contribute to the reduction of the tuples to be retrieved. We will see an example of this in Case 2

below. A coupling factor is said to be effective if the coupling effect actually contributes to the

reduction of the tuples to be retrieved. In Case 1, the expressions in angle brackets represent the

coupling factors from R2 to R1 and from Rx to R2, respectively. Hence,

-28-

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

^*12 = 2 * A2'

Cfn = Jx X b(l/FB1, Fm X nR2, FB2 X nR2)/(l/FB1).

One important observation here is that the coupling factors do not depend on the specific access

structures present in either relation, nor on the specific join method selected, but rather (and solely)

depend on the restriction and the data characteristics. Such characteristics include the side the

relation is on in the 1-to-N relationship, the average number of tuples in one group, and the join

selectivity-which will be known before we start the design phase.

Now let us investigate the remaining cases in which coupling effects are present between relations.

Case 2: The sort-merge join method is applied to both relations, in the same situation as in Figure

3-4. The cost formula is then as follows:

Cost = pAd^Rj) + FA2 X mR1 + SORT(FA2 X HR1 X mR1)]

+ [IA(IB2,R2) + b(mR2,pR2,FB2 X nR2) + SORT(Fß2 X HR2 X mR2)] ■

It will be noted that the coupling factors do not appear in the cost formula. This is because, when

the sort-merge join method is used, an initial scan and the sort are performed before the join is

resolved; indexes are not used any more while the join is being actually resolved, since the relation

scan is performed upon the sorted temporary relations. The coupling effect can arise only when the

join is being actually resolved and only when the join index is used. Thus, the coupling factor is not

effective in this case.

Case 3: The sort-merge join method is used for Rp the join index method for R2—in the same

situation as in Figure 3-4. The join will be performed as described in Section 3.3, under the heading

"Combination of the Join Index Method and the Sort-Merge Method." Note that the coupling

factor is effective from R, to R2, but not from R2 to Rr Thus, we obtain the following cost formula:

Cost = pAa^Rj) + FA2 X mR1 + SORT(FA2 X HR X mR1)]

+ [IA(IB2,R2) + IS(IB1,R2) + b(mR2,pR2,Cf12 X Fß2 X nR2)]

-29-

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

Case 4: The join index method is used on Rp the sort-merge method on R2~in the same

situation as in Figure 3-4. We obtain the following cost formula:

Cost = [IAd^R^ + ISd^Ri) + Cf21 X FA2 X nR1]

-I- [IA(IB2,R2) + b(mR2,PR2,FB2 X nR2) + SORT(Fß2 X HR2 X mR2)]

In all the cases above we note that the access cost for each relation is independent of any

parameter of the other relation. Thus, when the optimizer chooses the least costly join methods, it

can compare the costs for only one relation at a time.

3.5.3 Formalization

So far, we have discussed the property of separability for relational systems through a series of

examples and case analyses. The ideas involved are now formalized. To begin with, we rephrase the

definitions and the theorem presented in Chapter 2 to make them specifically suitable for relational

systems.

Definition 3.5: The procedure of designing the optimal access configuration of a database is

separable if it can be decomposed into the tasks of designing the optimal configurations of individual

relations independently of one another. D

Definition 3.6: A partial-join cost is that part of the join cost that represents the accessing of only

one relation, as well as the auxiliary structures defined for that relation. D

Definition 3.7: A partial-join algorithm is a conceptual division of the algorithm of a join method

whose processing cost is a partial-join cost. D

Theorem 3.1: The procedure of designing the optimal access configuration of a database is

separable if the following conditions are satisfied:

1. A partial-join cost for relation R can be determined regardless of the partial-join
algorithm used and the access configuration defined for Other(R).

2. A partial-join algorithm can be chosen for R regardless of the partial-join algorithm used
and the access configuration defined for Other(R). D

-30-

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

Additionally, we need the following definitions:

Definition 3.8: The partial coupling effect from relation R1 to relation R2, with respect to each

transaction, is the ratio of the number of distinct join column values of the tuples of Rr selected

according to the index-processible predicate for Rr to the total number of distinct join column

values in Rr D

Definition 3.9: A partial coupling factor PCf12 from relation R1 to relation R2 with respect to a

transaction is the ratio of the number of distinct join column values of R2, selected by both the

partial coupling effect from Rx (through the restriction predicate for R^ and the join selectivity of

R2, to the total number of distinct join column values in R2. D

Definition 3.10: The restricted set of relation R with respect to a transaction is the set of tuples of

R selected according to the restriction predicate for R. D

Definition 3.11: The partially restricted set of relation R with respect to a transaction is the set of

tuples of R selected according to the index-processible predicate for R. D

Definition 3.12: The coupled set of relation Rx with respect to a transaction is the set of tuples in

R, selected according to the coupling factor from R2. D

Definition 3.13: The partially coupled set of relation Rx with respect to a transaction is the set of

tuples of R, selected according to the partial coupling factor from R2. D

Definition 3.14: The result set of relation R with respect to a transaction is the intersection of the

restricted set and the coupled set. Thus, the tuples in the result set satisfy all the predicates. □

Definition 3.10 to Definition 3.14 define various subsets of the relation according to the predicates

they satisfy. In Figure 3-6 these subsets are graphically illustrated. Cardinalities of subsets of

relation R.^ can be obtained as follows:

-31 -

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

Figure 3-6: Various Subsets of a Relation.

32

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

[restricted set| = nR X Selectivity of the restriction predicate

Ipartially restricted set| =n„ X Selectivity of the index-processible predicate
Ki

|coupled set| = nR X Cf21

Ipartially coupled set| = nR X PCf21

Iresult set| = nR X Cf21 X Selectivity of the restriction predicate

Using all the definitions and the theorem above, we prove the following theorem that shows the

separability of a relational system.

Theorem 3.2: The set of join methods consisting of the join index method, the sort-merge

method, and the combination method satisfies the conditions for separability under the constraint

that, whenever the join index method is used for both relations, at least one relation must have

indexes for all restriction columns.

Proof: In the set of join methods considered, there are two partial-join algorithms: the join index

method (partial) and the sort-merge method (partial). Since these two can be arbitrarily combined

to form a join method, Condition 2 for separability is satisfied. For Condition 1 of separability we

prove that each of the three sufficient conditions is satisfied as follows:

Condition 1.1: We prove that the first condition is satisfied by showing that the following

statements are true:

1. If the sort-merge method is used, the set of records in R that are accessed is the
restricted/partially restricted set

2. If the join index method is used, the set of records in R that are accessed is the
intersection of restricted/partially restricted set and the coupled set

Then, we know the set of records of R accessed is independent of the access structures of and the

join methods used for Other(R) because the restricted/partially restricted set can be completely

determined by local parameters of relation R, and the coupled set can be determined by the

coupling effect and the join-filtering effect which are independent of the access structures of

Othcr(R) and the partial-join algorithms used for Other(R).

33

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

Now, let us investigate each of the two statements. First, when the sort-merge method is used, it

follows directly from the definition of this join method that the partially restrictive set will be

accessed if there are residual predicates; the restricted set will be accessed otherwise. Second, when

the join index method is used, the optimizer will access the indexes of the relation (say R) having

indexes for all restriction columns first. Since the predicates for R are entirely resolved by using

indexes, coupling factor is effective in Other(R). The data records of Other(R) will subsequently be

accessed and the predicates for Other(R) are entirely resolved before accessing records of R. Thus,

coupling factor is also effective in R. Since full-not p'artial-coupling factors are effective in both

relations, the records to be accessed are in the coupled set These tuples are also in the

restricted/partially restricted set because the index-processible predicate is resolved by using indexes

before data tuples are accessed.

Let us note that, if the optimizer accesses the indexes of Other(R) first, then only partial coupling

factor is effective in R. But, because this will always cost more than the previous method, the

optimizer will always choose the previous one.

Condition 1.2: The order of accessing those tuples is always the join column value order

regardless of the access structures and partial-join algorithms used.

Condition 1.3: Since we assumed that a block contains tuples of only one relation, tuples of a

relation cannot interfere with the placement of tuples of other relations. Q.E.D.

3.5.4 Separability in cases where arbitrary indexes are missing

The set of join methods in Theorem 3.2 does not have the separability property if, for any

transaction, some restriction indexes are missing in both relations. Example 3.3 further illustrates

this point

Example 3.3: Let us assume that the join index method is used for both Rx and R2, in the same

-34-

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

situation as in Figure 3-4, but that-now restriction indexes for both R2 and R2 are missing. In this

situation, since there are no restriction indexes, there is no way of resolving the restriction predicate

without accessing the tuples themselves. Therefore, if we access relation Rx first, the access cost

would be

Costl = [ISa^R^ + PCf21 X nR1] + [IS(IB1,R2) + b(mR2,pR2,Cf12 X nR2)]

On the other hand, if we access relation R2 first, the access cost would then be

Cost2 = [IS(IA1,R1) + Cf21 X nR1] + [IS(Ißl,R2) + b(mR2,pR2,PCf12 X nR2)]

Here, PCf21=J, and PCf12=J2 since there are no restriction indexes in both Rx and R2. In

general, if some restriction indexes are missing in both relations, the coupling factor is effective in

one relation while the partial coupling factor is effective in the other relation. The choice depends

on which relation is to be accessed first. The optimizer will choose the one that makes the join cost

cheaper at run time based on the access configurations of both relations. Since this choice depends

on the access configurations of both relations, the design is not separable.D

What's implied in the optimal design of the physical database is that those indexes that do not

compensate for their maintenance and access costs should not be included in the result. Since

Theorem 3.2 requires the existence of all the restriction indexes in at least one relation for each

two-variable transaction, we can inevitably expect that, for some transactions, this constraint is not

met during the decision process. In this situation calculation of the cost is no longer separable.

Nevertheless, the error caused by the assumption of separability should not be significant because

the restriction indexes for both relations that have been dropped must be relatively

insignificant-otherwise, the indexes would not have been dropped.

35-

CHAPTER 3. SEPARABILITY IN RELATIONAL DATABASE SYSTEMS

3.5.5 Update cost

We assume here that updates are performed only on individual relations, although the

qualification part (WHERE clause) may involve more than one relation. Thus, updates are not

performed on the join of two or more relations.

Imagine that the qualification part—which can be treated as a query— is segregated. Then, the

remaining part-update operation—depends only on the local parameters of the relation to be

updated and on the coupling factor because the update operation should only occur after all the

predicates are resolved. When processing the qualification part, there are some restrictions as

explained in Section 3.3.2. The restriction, however, is independent of the access" structures or

partial-join algorithms of other relations. Thus, separability can also be applied to the update

transactions as well.

3.6 Summary

The theory of separability has been investigated in the context of relational database systems. In

particular, it has been shown that the set of join methods consisting of the join index method, the

sort-merge method, and the combination method has the property of separability. The implication

is that, if the database system supports only this set of join methods, the physical database can be

designed relation by relation independently of one another.

-36

CHAPTER 4. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

4. Physical Design Algorithms for Multifile
Relational Databases

4.1 Introduction

In this chapter and Appendix D an algorithm for the optimal physical design of multifile

databases will be presented. Appendix D contains detailed experimental data for the validation of

the algorithm. This algorithm exploits the property of separability so that the entire design is

partitioned into the designs of individual relations. The scheme is extended, using heuristics, to

include the inner/outer-loop join method which cannot be incorporated by the theory of

separability. The design of a single relation can still be a very complex problem. Thus, other

heuristics are employed to further reduce the complexity of this design process.

In Section 4.2 the design algorithm is described in detail. Its time complexity is investigated in

Section 4.3. Validation of the heuristics involved in the algorithm is briefly explained in Section 4.4.

4.2 Design Algorithm

The design algorithm is schematically illustrated in Figure 4-1.

The input information for and the output results from the design algorithm are described below:

Input:

• Usage information: A set of various queries and update transactions with their
frequencies.

• Data Characteristics: The logical schema including connections; (for each relation in the
database) cardinality, blocking factor, index blocking factors and selcctivities of all
columns, relationships with respect to connections, join selcctivities with respect to
connections.

• Derived inputs: Coupling factors with respect to individual two-variable transactions.
(These are derived from the data characteristics and the restriction predicates in the
transactions.)

-37-

CHAPTER 4. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

Output:

I
-V-

Phase 1

| Index Selection |

I

| Clustering Design |

 1--

Relation by Relation

{Join Index Method
Sort-Merge Method
Combination Method}

Phase 2

| Resolve Inner/Outer-Loop Join |

I

I Perturbation I

Entire Database

{All Join Methods)

Figure 4-1: Algorithm 1 for the Optimal Design of Physical Databases.

• The optimal access configuration of the database, which consists of the optimal position
of the clustering column and the optimal index set for each relation.

• The optimal join method for each two-variable transaction.

ALGORITHM 1

The design is performed in two phases: Phase 1 and Phase 2. These two phases are iterated until

the refinement through the loop becomes negligible (say <1%). In Phase 1, based on the theory of

separability, the access configuration is designed relation by relation independently of one another

using only the join methods in the separable set- the join index method, the sort-merge method,

-38-

CHAPTER 4. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

and the combination method. Phase 1 is further divided into two steps: the Index Selection Step

and the Clustering Design Step. In the Index Selection Step an optimal index set is chosen given the

clustering column position determined in the Clustering Design Step of the last iteration. (Initially,

in the first iteration, there is no clustering column.) In the Clustering Design Step, an optimal

clustering column position is chosen given the index set determined in the Index Selection Step.

Before introducing the details for these steps, we define the function EVALCOST-1 as follows:

Function EVALCOST-1

Input:

• Access configuration of the relation being considered.

• Set of transactions that are to be processed in Phase 1 using the inner/outer-loop join
method and the direction of the join for each transaction in the set (These transactions
are identified in Phase 2 of the previous iteration.)

Output:

• Total cost of the relation.

(In the input specification of this function as well as the functions or algorithms introduced later, the

global input information introduced at the beginning of this section is implicitly assumed unless

stated otherwise.)

The total cost of a relation is obtained by summing up the costs of single-relation transactions and

the partial-join costs of two-relation transactions that refer to the relation. The cost of each

transaction must be multiplied by its frequency. For each partial-join, the best partial-join algorithm

is selected and its cost calculated. However, if the transaction is supposed to be processed by the

inner/outer-loop join method according to the input information, that method will be used

unconditionally according to the join direction specified because the inner/outer-loop join method

cannot be treated uniformly with separable join methods in Phase 1 due to its nonseparable nature.

-39-

CHAPTER 4. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

Using the function EVALCOST-1 defined above, the algorithm for index selection is described as

follows:

Index Selection Step

Input:

• Clustering column position for each relation

• Set of transactions that are to be processed using the inner/outer-loop join method and
the direction of the join for each transaction in the set

Output:

• The optimal index set for each relation with respect to the input information.

Algorithm:

1. Pick one relation and start with an access configuration having a full index set

2. Try to drop one index at a time and apply EVALCOST-1 to the resulting access
configuration to find the index that yields the maximum cost benefit when dropped.

3. Drop that index.

4. Repeat Steps 2 and 3 until there is no further reduction in the cost

5. Try to drop two indexes at a time and apply EVALCOST-1 to the resulting access
configuration to find the index pair that yields the maximum cost benefit when dropped.

6. Drop that pair.

7. Repeat Steps 5 and 6 until there is no further reduction in the cost

8. Repeat Steps 5, 6, and 7 with three indexes, four indexes, ..., up to k (k must be
predefined) indexes at a time.

9. Repeat the entire procedure for every relation in the database.

The variable k, the maximum number of indexes that are dropped together at a time, must be

supplied to the algorithm by the user. According to the results of the experiments, however, k=2

suffices in most practical cases.

40-

CHAPTER 4. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

The index selection algorithm presented here bears some resemblance to the one introduced by

Hammer and Chan [HAM 76], but it uses the Drop Heuristic [FEL 66] instead of the ADD Heuristic

[KUE 63]. The Drop Heuristic attempts to obtain an optimal solution by incrementally dropping

indexes starting with a full index set On the other hand, the ADD Heuristic adds indexes

incrementally starting from an initial configuration without any index to reach an optimal solution.

Since we are pursuing a heuristic approach (DROP heuristic) for index selection, the actual result is

suboptimal. An experimental study in Appendix F shows that the algorithm finds optimal solutions

in most of the cases.

The Clustering Design Step comes next in Phase 1.

Clustering Design Step

Input:

• Index set for each relation determined in the Index Selection Step.

• Set of transactions that are to be processed using the inner/outer-loop join method, and
the directions of the join for each transaction in the set.

Output:

• Optimal position of the clustering column for each relation with respect to the input
information.

Algorithm:

1. Select one relation.

2. Assign the clustering property to one column of the relation.

3. Apply EVALCOST-1 to the resulting access configuration.

4. Shift the clustering property to another column of the relation and repeat Steps 2 and 3.

5. Repeat Step 4 until all the columns of the relation have been considered, including the
configuration having no clustering column is also considered. Then determine the one
that gives the minimal cost as the clustering column (or none).

41 -

CHAPTER 4. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

In Substep 2 the clustering property accompanies an index if the column has not been assigned

one in the Index Selection Step. This strategy slightly enhances the accuracy of the design

algorithms. More details on this strategy as well as other strategies enhancing the accuracy can be

found in Appendix J.l.

The clustering design algorithm amounts to an enumeration of all possible alternatives. However,

because of the restriction that a relation can have at most one clustering column, the time complexity

is only linear on the number of columns in the relation. When a virtual column is involved, there

could be more than one clustering column in a relation since the first component column of a virtual

column that is clustering is itself a clustering column. But, since the two columns are tightly

interlocked, the time complexity is still linear on the number of columns (now including virtual

columns) in the relation.

In Phase 2 the design algorithm is extended to include the inner/outer-loop join method. Since

the inner/outer-loop join method is nonseparable, it cannot be incorporated in Phase 1. Instead, a

separate step (Resolve Inner/Outer-Loop Join Step) is attached to take a corrective action. Given

the access configuration from Phase 1, for each two-relation transaction, the best join method is

selected. If the inner/outer-loop join method happens to be the best one, it is remembered that the

transaction be processed by the inner/outer-loop join method in Phase 1 of the next iteration. Also

remembered is the direction of the join. To describe the algorithm for the Resolve Inner/Outer-

Loop Join Step, we define the function EVALCOST-2.

Function EVALCOST-2

Input:

• Access configuration of the entire database.

Output:

-42-

CHAPTER 4. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

• Total cost of the database.

Side Effect:

• Two-relation transactions that use the inner/outer-loop join method are marked, and
their join directions recorded.

The total cost of the database is obtained by summing up the costs of all transactions multiplied

by their respective frequencies. For each two-relation transaction, the best join method (including

the inner/outer-loop join method) is selected and its cost calculated. As a side effect, if the best join

method for a transaction is the inner/outer-loop join method, a reminder is attached to the

transaction that it must be processed by the inner/outer-loop join method in Phase 1 of the next

iteration. This reminder is one of the elements that interfaces Phase 1 and Phase 2 conveying

information from one phase to another.

The following is the algorithm for Resolve Inner/Outer-Loop Join Step:

Resolve Inner/Outer-Loop Join Step

Input:

• The access configuration of the database produced by Phase 1.

Output:

• Set of transactions to be processed by the inner/outer-loop join method and the
direction of the join for each transaction in the seL

Algorithm:

1. Apply EVALCOST-2 once. The desired output will be obtained by the side effects of
EVALCOST-2.

The second step of Phase 2 is the Perturbation Step. This step eliminates snags in the design

process which may be incurred by some anomalies.

-43-

CHAPTER 4. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

One anomaly is due to the peculiar characteristics of update transactions; that is, in processing an

update transaction, the join index always remains after Phase 1 during the first iteration because the

join index method is the only one available to resolve the join predicate for the relation being

updated. (The sort-merge method is not allowed for the relation to be updated; the inner/outer-loop

join method cannot be used in Phase 1 of the first iteration.) A problem arises in the Resolve

Inner/Outer-Loop Join Step when the inner/outer-loop join is costlier than the join index method,

but less costly if the maintenance (update) cost of the join index is incorporated. In this situation it

would be more beneficial to use the inner/outer-loop join method and drop the join index. But,

since the Inner/Outer-Loop Join Step does not incorporate the index maintenance cost, the

algorithm finds the join index method less costly and lets the join index stay. Hence, we may never

have a chance to drop the index. Simply adding the maintenance cost to that of the join index

method will not work since the maintenance cost of an index must be shared by all transactions

accessing that index. Therefore, in the Perturbation step, we try to drop the join index and compare

the total transaction processing costs before and after the change. If the change proves to be

beneficial, the join index is actually dropped.

Another anomaly occurs because we consider the inner/outer-loop join method separately from

the other join methods. Sometimes the presence of an index favors performing the inner/outer-loop

join in a certain direction. Dropping that index and reversing the direction of the inner/outer-loop

join, however, may be more beneficial. But, it is impossible to consider this alternative in the

Inner/Outer-Loop Join Step since that step is not allowed to change the access configuration. To

solve this problem, in the Perturbation Step, we also try to drop an arbitrary index (as well as join

indexes) and make the change permanent if it reduces the cost.

We generalize this concept and try to addan index as well as to drop one. Here, the algorithm for

the Perturbation Step of Algorithm 1 follows:

Perturbation Step

44

CHAPTER 4. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

Input:

• Access configuration produced by Phase 1.

• Total cost of the database obtained in the Inner/Outer-Loop Join Step.

Output:

• Modified access configuration of the database.

Algorithm:

1. Pick a column in the database. Try to drop the index if the column has one; otherwise
add one.

2. Obtain the total cost of the database using EVALCOST-2. If the change reduces the
cost, make it permanent.

3. Repeat Steps 1 and 2 for every column in the database.

We note that the Perturbation Step is supposed to accomplish a minor revision in the current

access configuration to eliminate the snags that obstruct a smooth flow of the design process. Thus,

only a small number of columns will be affected by the Perturbation Step; the affected columns

must be sparsely scattered, and relatively independent of one another. Accordingly, dropping or

adding two or more indexes together is excluded from consideration. For the same reason, an

arbitrary order is chosen in considering the columns.

4.3 Time Complexity of the Design Algorithm

The time complexity is estimated in terms of the number of calls to the cost evaluator

(EVALCOST-1 or EVALCOST-2) which is the costliest operation in the design process. The overall

time complexity of Algorithm 1 is 0(tXvk+1) + O(tXc), where t is the number of transactions

specified in the usage information, v the average number of columns in a relation, c the number of

columns in the entire database, and k the maximum number of columns considered together in the

Index Selection Step. Phase 1 contributes to the first term in the complexity; Phase 2 to the second.

45

CHAPTER 4. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

Among the two design steps in Phase 1, the Clustering Design Step has a time complexity O(tXv)

which is dominated by that of the Index Selection Step. In the Index Selection Step EVALCOST-1

is called for every k-combination of columns of the relation being considered and for every

transaction that refers to the relation. This contributes the order of (s/r)XtXvk, where r is the

number of relations in the database and s is the average number of relations that a transaction refers

to. (Thus, (s/r) represents the average ratio of the number of transactions referring to a particular

relation to the total number of transactions.) This procedure is repeated until there is no further

reduction in the cost (the number of repetitions is proportional to v). Since the entire procedure is

If 4-1 repeated for every relation, the overall time complexity of Phase 1 is 0(tXv) if we assume that s

is relatively fixed. More detailed derivation of the time complexity of the Index Selection Step can

be found in Appendix D.

In Phase 2, the Resolve Inner/Outer-Loop Join Step requires only one call to EVALCOST-2;

thus, it is dominated by the Perturbation Step. The Perturbation Step calls EVALCOST-2 for every

column in the database and for every transaction in the usage. As a result, the time complexity of

this step is O(tXc). Let us note that if v, the average number of columns in a relation, is relatively

fixed, the time complexity of Algorithm 1 is linear on c, the total number of columns in the database.

Let us note that Algorithm 1 achieves a substantial improvement in time complexity compared

with the exhaustive-search method whose time complexity is 0(tX(v + l)rX2c). Here, the factor

(v+l)r is the total number of clustering configurations since the clustering column could be any one

of v columns of a relation or there could be no clustering column at all. The factor 2C is the total

number of index configurations since each of c columns in the database can either have an index or

not.

-46-

CHAPTER 4. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

4.4 Validation of Design Algorithms

An important task in developing a heuristic algorithm is its validation. Because physical database

design is such a complex problem, finding mathematical worst-case bounds on the deviations from

the optimality (we shall simply call them deviations) of the solutions produced by the heuristic

algorithm is almost impossible. Consequently, we have to rely on empirical test results of the

algorithm for its validation. A simple method would be to compare the heuristic solutions with the

optimal ones for various input situations. In many cases, however, identifying the optimal solution

itself is a difficult, often impossible, task. For simple situations optimal solutions can be obtained by

exhaustively searching through all the possible alternatives. For more complex situations, however,

an exhaustive-search is practically prohibited by its exponentially increasing complexity.

One alternative method for validating a heuristic algorithm in these complex cases is to devise

different heuristic algorithms and compare their solutions. If these solutions are identical, we

conclude that they are very likely to be optimal, for it is very unlikely that different heuristics can

cause exactly the same deviations from the optimal solution. Thus, for this purpose, two additional

design algorithms (see Figures 4-2 and 4-3) are proposed. The two algorithms are derived from

Algorithm 1 introducing variations that help validate heuristics involved. We first introduce the

algorithms and then compare them for the purpose of validation.

ALGORITHM 2

Algorithm 2 is almost identical to Algorithm 1 except that the two steps in Phase 1 are combined

in one design step: the Combined Index Selection and Clustering Design Step (Combined Step).

The algorithm is described below:

Combined Step

Input:

47-

CHAPTER 4. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

Phase 1

| Combined Index Selection!
j & Clustering Design |

Relation by Relation

{Join Index Method
Sort-Merge Method
Combination Method}

Phase 2

| Resolve Inner/Outer-Loop Join

I
Entire Database

{All Join Methods}

Figure 4-2: Algorithm 2 for the Optimal Design of Physical Databases.

NS Index Selection
- Entire Database
| {All Join Methods}

NS Clustering Design
- Entire Database
| {All Join Methods}

Figure 4-3: Algorithm 3 for the Optimal Design of Physical Databases.

• Set of transactions that are to be processed using the inner/outer-loop join method and
the direction of the join for each transaction in the set

-48-

CHAPTER 4. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

Output:

• Optimal access configuration for each relation with respect to the input information.

Algorithm:

1. For each clustering column position in a relation, perform index selection as defined in

Algorithm 1.

2. Save the best configuration.

ALGORITHM 3

Algorithm 3 is different from Algorithms 1 and 2 in that it does not rely on the property of

separability. This algorithm has a much higher time complexity compared with the two previous

algorithms (see Appendix D). The algorithm consists of one phase which, in turn, is decomposed

into two steps: the NS Index Selection Step and the NS Clustering Design Step (the prefix NS

stands for "nonseparable"). The two steps design the access configuration of the entire database all

together rather than relation by relation. All available join methods are incorporated. The

algorithms are described below:

NS Index Selection Step

Input:

• Clustering column positions determined in the NS Clustering Design Step of the last
iteration.

Output:

• Optimal index set of entire database with respect to the given clustering column
positions.

Algorithm:

1. Identical to the Index Selection Step except that the index set is designed for the entire
database at the same time and using the function EVALCOST-2.

-49-

CHAPTER 4. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

NS Clustering Design Step

Input:

• Index set of the database determined in the NS Index Selection Step.

Output:

• Optimal positions of the clustering columns with respect to the given index set

Algorithm:

1. Start with an access configuration having no clustering columns.

2. Try to assign the clustering property to one column in the database at a time. Applying
EVALCOST-2, find the column that yields the maximum cost benefit.

3. Assign the clustering property to that column.

4. Repeat Steps 2 and 3 with the constraint that one relation can have at most one
clustering column until there is no further reduction in the cost.

5. Starting with the access configuration from Step 4, try to assign the clustering property to
two columns in the database at a time. One relation can have at most one clustering
column. Applying EVALCOST-2, find the pair that yields the maximum cost benefit.

6. Assign the clustering property to that pair.

7. Repeat Steps 5 and 6 until there is no reduction in the cost.

8. Repeat Steps 5, 6, and 7 with three columns, four columns,..., up to k columns (k must
be predefined) at a time.

The two algorithms are used for the validation of heuristics as follows. Algorithm 2 combines the

two steps in Phase 1 into one design step. Thus, the heuristic of separating two steps in Algorithm 1

can be validated by comparing the solutions from Algorithms 1 and 2. Similarly, since Algorithm 3

does not exploit the property of separability, the inner/outer-loop join can be incorporated in Phase

1, and Phase 2 is no longer necessary. Thus, the heuristic involved to incorporate the inner/outer-

loop join method in Algorithm 1 can be validated by comparing the solutions of Algorithms 1 and 3.

Experimental studies for validation of the physical design algorithms can be found in Appendix D.

-50-

CHAPTER 4. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

Another heuristic employed in all Algorithms is that of index selection. Since the DROP index

selection heuristic is used in three algorithms in common, it cannot be validated by comparing these

algorithms. Instead, since index selection is a relatively independent submodule in physical design

algorithms, it can be validated separately from the other part of the design algorithms. With

reasonably sized input situations, the exhaustive-search method is feasible to find the optimal

solutions for this problem. Experimental studies for validation of index selection heuristic can be

found in Appendix F.

4.5 Summary

An algorithm for the optimal design of multifile physical databases has been presented. This

algorithm is based on the theory of separability and is heuristically extended to include the

inner/outer-loop join method which is a nonseparable join method. Other nonseparable join

methods, if available, can be incorporated similarly. The time complexity of this algorithm shows a

significant improvement compared with that of the exhaustive-search method.

Two additional algorithms have been proposed for the validation of heuristics employed in the

design algorithm. The validation can be performed by comparing the solutions of three algorithms

that utilize different heuristics.

-51-

CHAPTER 5. INDEX SELECTION

5. Index Selection

5.1 Introduction

We consider here and in Appendix F the problem of selecting a set of indexes that minimizes the

transaction-processing cost in relational databases. Appendix F contains detailed experimental data

and their analysis. Index selection is an interesting and well-defined subproblem of the access

structure selection problem. For this reason, we isolate this problem from the rest of the access

structure selection problem and concentrate on its own aspects.

Although there has been a considerable effort in the development of algorithms for index

selection, most research in the past has concentrated on single-file cases. Furthermore, most of them

addressed only secondary index selection, and incorporation of the primary structure (the clustering

property) of the file has remained to be solved. In this chapter we develop an index selection

algorithm with a reasonable efficiency that can be extended to multiple-file databases as well as

extended to incorporate the clustering property.

We begin in Section 5.2 with the index selection algorithm for single-file databases without the

clustering property. This algorithm is extended in Section 5.3 to incorporate the clustering property.

An extension to the multiple-file environments is discussed in Section 5.4.

5.2 Index Selection for Single-File Databases

ALGORITHM 4

Input:

• Usage information: A set of various queries and update, insertion, deletion transactions
with their relative frequencies.

• Data characteristics: Relation cardinality, blocking factor, selectivities and index
blocking factors of all columns.

52-

CHAPTER 5. INDEX SELECTION

Output:

• The optimal (or suboptimal) index set

Algorithm:

1. Start with a full index set

2. Try to drop one index at a time and, applying the cost evaluator, obtain the total
transaction-processing cost to find the index that yields the maximum cost benefit when
dropped.

3. Drop that index.

4. Repeat Steps 2 and 3 until there is no further reduction in the cost.

5. Try to drop two indexes at a time and, applying the cost evaluator, obtain the total
transaction-processing cost to find the index pair that yields the maximum cost benefit
when dropped.

6. Drop that pair.

7. Repeat Steps 5 and 6 until there is no further reduction in the cost.

8. Repeat Steps 5, 6, and 7 with three indexes, four indexes, ..., up to k (k must be
predefined) indexes at a time.

The variable k, the maximum number of indexes that are dropped together at a time, must be

supplied to the algorithm by the user. According to the results of the experiments, however, k=2

suffices in most practical cases.

The algorithm presented bears some resemblance to the one introduced by Hammer and Chan

[HAM 76], but with one major modification: the DROP heuristic [FEL 66] is employed instead of

the ADD heuristic [KUE 63]. The DROP heuristic attempts to obtain an optimal solution by

incrementally dropping indexes starting from a full index set. On the other hand, the ADD heuristic

adds indexes incrementally starting from an initial configuration without any index to reach an

optimal solution. An experimental study in Appendix F shows that the solutions generated by the

DROP heuristic are close to the optimal in many practical situations. It also indicates that the

53-

CHAPTER 5. INDEX SELECTION

DROP heuristic performs better than ADD heuristic. The following argument provides one

possible reason for this result In the ADD heuristic, when the first index is added, the cost changes

drastically causing an abrupt change in the design process. In the DROP heuristic, however,

dropping indexes causes a smooth transition in the design process since dropping one index does not

make a big change in the cost due to the compensating effect of the other existing indexes.

Advantages of the DROP heuristic over the ADD heuristic in the warehouse location problem are

summarized in [FEL 66].

The time complexity of the algorithm is 0(gXvk+1), where g is the number of transactions

specified in the usage information, v the number of columns in the relation, and k the maximum

number of columns considered together in the algorithm. The time complexity is estimated in terms

of the number of calls to the cost evaluator which is the costliest operation in the design process. In

the algorithm the cost evaluator is called for every k-combination of columns of the relation, and for

every transaction in the usage information. This contributes the order of gXvk. The procedure is

repeated until there is no further reduction in the cost. Since the number of repetitions is

proportional to v, the overall time complexity is 0(gX vk+1).

5.3 Index Selection when the Clustering Column Exists

Incorporation of the clustering property to the index selection algorithm is straightforward. Two

algorithms for this extension are presented below:

ALGORITHM 5

1. For each possible clustering column in the relation perform index selection.

2. Save the best configuration.

ALGORITHM 6

1. Steps 2 and 3 are iterated until the improvement in the cost through the iteration loop is
less than a predefined value (e.g., 1%).

-54-

CHAPTER 5. INDEX SELECTION

2. Perform index selection with the clustering column determined in Step 2 of the last
iteration. (During the first iteration it is assumed that there is no clustering column.)

3. Perform clustering design with the index set determined in Step 1. The clustering
property is assigned to each column in turn, and the best clustering column is selected.

Algorithm 5 is a pseudo enumeration since index selection is repeated for every possible

clustering column position. Accordingly, Algorithm 5 has a higher time complexity compared to

Algorithm 6, but has a better chance of finding an optimal solution. Algorithm 5 corresponds to

Phase 1 of Algorithm 2, a physical database design algerithm presented in Chapter 4. Algorithm 6

corresponds to Phase 1 of Algorithm 1.

5.4 Index Selection for Multiple-File Databases

Extension of the index selection algorithm for application to multiple-file databases is also

straightforward. The extended algorithm (let us call it Algorithm 7) is identical to Algorithm 4

except for the following considerations:

1. In all steps the entire database is designed at the same time. It is done by treating all
columns in the database uniformly as if they were in a single relation.

2. In Steps 2 and 5, when evaluating transactions involving more than one relation, the
optimizer [SEL 79], [STO 76] has to be invoked to find the optimal sequence of access
operations.

Algorithm 7, if the clustering property is incorporated, corresponds to Algorithm 3 presented in

Chapter 4.

5.5 Summary

In this chapter the access structure selection problem has been analyzed from the view point of

the index selection problem. Important components of physical database design algorithms-Phase

1 of Algorithm 1, Phase 1 of Algorithm 2, and Algorithm 3 itself-have been shown to be extensions

of index selection algorithm. The advantages of the DROP heuristic over the ADD heuristic have

been discussed.

55

CHAPTER 6. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASE SYSTEMS

6. Transaction-Processing Costs in Relational
Database Systems

6.1 Summary

This chapter is identical to Appendix E. We therefore present here only a brief summary of the

chapter. Accurate estimation of transaction costs is important for both query optimization and

physical database design. In this chapter a comprehensive set of formulas for estimating transaction-

processing costs in relational database systems is developed. The assumptions and the model of

storage structures considered are stated in detail in Appendix E.2. The experiments for the design

algorithms introduced in Chapter 4 have been performed using the cost formulas developed in this

chapter. However, let us note that the theory presented in Chapter 2 and Chapter 3 do not depend

on the specific cost model.

In this chapter, first a set of necessary terminology is defined to provide a mechanism for

understanding interaction among relations in multiple-file environments. Next, a set of elementary

cost formulas is developed for elementary access operations. In doing so, four types of ordering are

defined to characterize the order of accessing tuples. Finally, transactions are classified into eight

types, and the cost formulas for each type are derived as composites of elementary cost formulas.

The cost formulas have been fully implemented in the Physical Database Design Optimizer

introduced in Appendix D. The detailed discussions for developing cost formulas are referred to

Appendix E.

-56-

CHAPTER 7. ESTIMATING BLOCK ACCESSES IN DATABASE ORGANIZATIONS

7. Estimating Block Accesses in Database
Organizations

7.1 Summary

This chapter is identical to Appendix C. Thus, we present here only a brief summary of the

chapter.

An approximation formula is developed for estimating the number of block accesses when

randomly selected tuples are accessed in TID order. This formula improves Yao's exact formula in

the sense that it significantly reduces the computation time by eliminating the iterative loop, while

providing a practically negligible deviation (maximum error=3.7%) from the exact formula. It also

significantly improves Cardenas' earlier formula, which has a maximum deviation of e~ =36.8%.

The formula is presented below without derivation. The details of the development of this

formula are referred to Appendix C.

Block access formula: Let n records be grouped into m.blocks (l<m<n), each containing

p = n/m records. If k records are randomly selected from the n records, the expected number of

blocks hit (blocks with at least one record selected) is given by

bwl(m,p,k)/m = [l-(l-l/m)k]

+ [l/m2p X k(k-l)/2 X (l-l/m)k_1]

+ [1.5/m3p4 X k(k-l)(2k-l)/6 X (l-l/m)k_1]

whenk<n-p, and

bwl(m,p,k)/m = 1 when k > n - p

57-

CHAPTER 8. SEPARABILITY IN NETWORK MODEL DATABASE SYSTEMS

8. Separability in Network Model Database
Systems

8.1 Summary

This chapter is identical to Appendix B. Thus, we present here only a brief summary of the

chapter. We discuss an application of the theory of separability to network model database systems.

In particular, we show that a large subset of practically important access structures provided by the

network model database systems has the property of separability under the usage specification

scheme proposed. The implication is that, if the available access structures are restricted to this

subset, the optimal design of the access configuration of a multifile record type database can be

reduced to the collective optimal designs of individual record types. The physical designs thus

obtained is then extended, using heuristics, to include other access structures that have not been

incorporated initially. The CODASYL 78 Database Specification [COD-a 78] [COD-b 78] is used as

the environment for our discussion. The major assumptions and detailed discussion on this subject

are referred to Appendix B.

58-

CHAFrER 9. DESIGN ALGORITHMS FOR MORE-THAN-TWO-VARIABLE TRANSACTIONS

9. Design Algorithms for More-than-Two-
Variable Transactions

So far only transactions that involve at most two variables have been considered. Transactions of

more than two variables can be incorporated in the physical design methodology through

decomposition into a sequence of two-variable transactions. In this chapter a preliminary -though

not comprehensive-methodology is suggested for multivariable transactions. We investigate some

potential problems that violate the conditions for separability and discuss approximations to solve

those violations. However, a complete treatment of this problem including the validation of

heuristics involved needs much more work to be done and is left as a further study. Infection 9.1 an

extended algorithm for relational databases is discussed; in Section 9.2 one for network model

databases is discussed.

9.1 An Extended Algorithm for Relational Databases

9.1.1 The Algorithm

ALGORITHM 8

1. Start with an initial access configuration in which every column has an index and the
clustering property.

2. Decompose multivariable transactions into optimal sequences of two-variable
transactions based on the current access configuration.

3. Invoke the physical database desbn algorithm for two-variable transactions.

4. Repeat Steps 2 and 3 until the variation in the total cost becomes smaller than a
predefined value (say 1%).

The algorithm starts with an initial configuration in which every column has an index and the

clustering property. The initial configuration is intended to be as close to the optimal solution as

possible. In particular, it is believed that this configuration is closer to the optimal than the one

having a full index set but without any clustering property. Let us note that this initial configuration

-59-

CHAPTER 9. DESIGN ALGORITHMS FOR MORE-THAN-TWO- VARIABLE TRANSACTIONS

is not a practically feasible one; but, once the first iteration is finished, the access configuration

becomes feasible.

9.1.2 Decomposition

Decomposition is a procedure that finds an optimal sequence of two-variable transactions, or

equivalently, an optimal join sequence. In principle an optimal join sequence can be obtained by

enumerating all permutations of relations to be joined. Since the number of permutations could be

extensive, a heuristic is used to restrict the search space [SEL 79]. When possible, the search is

reduced by considering only those sequences in which a relation is related by a join predicate to any

of previous relations in the sequence. More formally speaking, in joining relations R^ R2,...,Rn, only

those sequences Ra, R^,...^ are examined which, for all j (j = 2,...,n), satisfy either of the following

conditions:

1. R;. has at least one join predicate with some relation Rik, where k < j.

2. for all k > j, R^ has no join predicate with any of R^, Ri2, ...,Rj/: _ ™.

The intention of this heuristic is to defer all joins requiring cartesian products as long as possible.

More discussions on this heuristic can be found in [SEL 79].

A join sequence can be visualized as a sequence of two-variable transactions as follows. Suppose

we have a join sequence Rj, R2,...,Rn> Then, the corresponding sequence of two-variable

transactions is (Rx JOIN R2), (T2 JOIN R3), (T3 JOIN ^....(T^ JOIN Rn), where T. is the result

of Rx JOIN R2 JOIN ... JOIN Rj_r Thus, except for the first join, each two-variable transaction is a

join between a temporary relation that contains the result of the joins performed so far and the next

relation in the join sequence.

A temporary relation can be either materialized or nonmaterialized. When materialized, a

temporary relation is written in a file on the secondary storage. When not materialized, a temporary

relation is a relation only in concept and does not physically exists. For instance, if Rp R2, R, are

joined by using the inner/outer-loop join method recursively (i.e., for one tuple of R, corresponding

-60-

CHAPTER 9. DESIGN ALGORITHMS FOR MORE-THAN-TWO-VARIABLE TRANSACTIONS

R2 tuples, and in turn, corresponding R3 tuples are retrieved; this procedure is repeated for every

tuple of R^, the temporary relation Rx JOIN R2 is not materialized, but still we can conceptually

visualize the temporary relation T2 as the result that would be obtained by joining R± and R2 only.

Materialized or not, a temporary relation has its cardinality which we call the result cardinality.

The result cardinality up to relation R. can be estimated as follows:

Result cardinality =

U_1 (n.X selectivity of the restriction predicate for Rj)X

nf h oin(l/column cardinality of the join column of the 1-side relation),

where n. is the cardinality of relation Rj. This assumes that each distinct join column value in the

N-side relation of the 1-to-N relationship has a matching value in the join column of the 1-side

relation according to the rules in the structural model [WIE 79].

For decomposed two-variable transactions involving temporary relations, only the following join

methods can be used. Let Rx be the temporary relation.

Rl R2
1. Sort-merge method (partial) Sort-merge method (partial)

2. Sort-merge method (partial) Join index method (partial)

3. Inner/Outer-Loop Join Method(partial) Inner/Outer-Loop Join Method(partial)

(from RA) (to R2)

The join index method (partial) for Rj is excluded from consideration since a temporary relation

does not have any index unless one is explicitly created. Since creating an index at run time is an

expensive procedure, we exclude this possibility. For the same reason, the Inner/Outer-Loop join

method is prohibited from R2 to Rr

The partial-join costs of these join methods for decomposed two-variable transactions are slightly

different from the ordinary ones. For the first two combinations the temporary relation must be

materialized. Therefore, the partial-join cost of Rx must include the cost of writing the temporary

relation to the disk initially. On the other hand, when the third combination is used, the temporary

-61-

CHAPTER 9. DESIGN ALGORITHMS FOR MORE-THAN-TWO-VARIABLE TRANSACTIONS

relation need not be materialized,-and further, it need not be read in since necessary tuples are

already held in the main memory. Thus, the partial join cost of R, becomes 0.

For convenience, we make further modification to the definition of partial-join costs for

decomposed two-variable transactions. Since we are not concerned about designing access

structures for Rr and further the partial-join algorithm for Rx is totally dependent on the partial-

join algorithm for R2, we can safely combine the partial-join cost of Rx with that of Rr This way, we

do not have to consider the cost of the temporary relation separately. Thus, the modified partial-join

cost for R2 can be calculated as follows:

Modified Cost of the Sort-Merge Method (partial) for R,

= Cost of the Sort-Merge Method (partial) for R2

+ Cost of materializing R.

+ Cost of the Sort-Merge Method (partial) for Rx

Modified Cost of the Join Index Method (partial) for R2

= Cost of the Join Index Method (partial) for R2

+ Cost of materializing R,

+ Cost of the Sort-Merge Method (partial) for Rx

Modified Cost of the Inner/Outer-Loop Join Method (partial) for R2

= Cost of Inner/Outer-Loop Join Method (partial) for R2

9.1.3 Discussion

In this subsection we shall investigate a potential problem in decomposition that violates a

condition for separability in decomposing a multivariable join in relational database systems. First

we identify the problem and propose a simple solution. It turns out that the simplest solution is to

ignore the problem. We shall provide some justification (though not complete) for this approach.

So far, we modelled a decomposed two-variable join as a join between a temporary

relation-materialized or not-representing the result of the joins already performed and the next

62-

CHAPTER 9. DESIGN ALGORITHMS FOR MORE-THAN-TWO-VARIABLE TRANSACTIONS

relation in the join sequence. If the inner/outcr-loop join method is used, however, there are some

cases in which the cost calculated based on this model is different from the actual cost as we see in

Example 9.1.

Example 9.1: Let Rr R2, R3, and R4 be four relations having N-to-1 relationship as described in

Figure 9-1.

Rj R2 R3
R4

I I I I
r—i i*—i i*—i i
i i i i i i i

Figure 9-1: Four Relations. The symbol * stands for an N-to-1 relationship.

We consider the join sequence <Rp R2, R3> R4>. Suppose that the join column of Rx is clustered.

If the inner/outer-loop join method is used for Rp the tuples of Rx having the same join column

value (let us call them a group) that satisfy the restriction predicate for Rx will be accessed

consecutively. Accordingly, the same tuple in R2 having the same join column value will be

repeatedly accessed; thus, the block containing this tuple will very likely reside in the main memory

without incurring additional I/O accesses. Furthermore, the tuple in R3 matching the R2 tuple and

accordingly the R4 tuple matching the R3 tuple will also be repeatedly accessed causing the blocks

containing these tuples to remain in the buffer. Thus, effectively, the cost of the inner/outer-loop

join method for R3 is reduced by a factor equivalent to the average number of tuples of Rx in the

same group that satisfy the restriction predicate for Rr The same situation happens when the join

index method or the sort-merge method is used for Rr It also happens to R3 and R4 when

temporary relation T2 (R1 JOIN R2) is materialized and the sort-merge method is used for T2. D

The situation in Example 9.1 violates a condition for separability. When a multivariable join is

decomposed, the access configuration of, or the join methods to be used for, the previous relations in

-63-

CHAPTER 9. DESIGN ALGORITHMS FOR MORE-THAN-TWO-VARIABLE TRANSACTIONS

the sequence are not known. Therefore, there is no way to find out whether the cost of the

inner/outer-loop join for a decomposed two-variable join would be reduced to allow for repeated

accesses.

As a simple solution to this problem, we keep the temporary-relation view for the nonmaterialized

intermediate result. By doing that, we sometimes overestimates the cost of the inner/outer-loop join

method; but, the property of separability is preserved. However, we believe the error that might be

introduced by this approximation is not significant according to the following justification. To

illustrate, let us again consider two relations R1 and R2 having an N-to-1 relationship. Let Fx and F2

be the selectivities of the restriction predicates for R, and R,.

1. If F1Xn1 < n2 there are less tuples selected than the number of groups in Rx assuming
that there are not many dangling tuples in R2; thus, most groups will have at most one
selected tuple, and the repeated access problem will rarely occur.

2. If FjXnj^ > n2, in many cases performing the inner/outer-loop join from R2 to R, is
more beneficial because it reduces the number of traversals of SET occurrences. If this is
the case, the repeated access problem will not occur since join is performed from 1-side
to N-side relation of die 1-to-N relationship.

3. Sometimes, the inner/outer-loop join method cannot be performed from R2 to Rx (for
instance, if R1 is a temporary relation). For these cases justification 2 is not valid;
instead, we make the following arguments: if FjXnx > n2, the cost of the join index
method or the sort-merge method is comparable to or even less than the inner/outer-
loop join cost for the following two reasons; thus, overestimating the cost of the
inner/outer-loop join method by ignoring the repeated access problem will not affect the
total transaction cost since we have less costly alternatives that will be chosen by the
optimizer.

a. Since FjXn^n^ the number of tuples selected in Rx is greater than or equal to
the number of join column values, which is equal to the number of groups. Thus,
most of the groups will be selected. Accordingly, most of the tuples as well as join
index entries of R2 will be accessed-possibly repeatedly. Hence, the cost of the
join index method may be comparable or even less than that of the inner/outer-
loop join method since, in the join index method, data tuples or index entries are
accessed only once.

b. Similarly, since a majority of R2 tuples (or at least their index entries if tuples do
not satisfy the restriction predicate) are accessed, at least one block access will be
needed for every tuple in R2. In this case the cost of the sort-merge method may
be less than that of the inner/outer-loop join method.

-64

CHAPTER 9. DESIGN ALGORITHMS FOR MORE-THAN-TWO-VARIABLE TRANSACTIONS

These arguments show that the solution of simply ignoring the repeated access problem will not

cause much deviation from the optimal in the transaction-procession cost.

9.2 An Extended Algorithm for Network Model Databases

9.2.1 Usage transformation functions

In this section we describe an algorithm to extend the physical design of network model databases

to more-than-two-variable transactions. Specifically, we present a method for obtaining the usage

transformation functions F and F defined in Chapter 8. These two functions together with
OM MO

function f represent the entire usage information to be used for the physical database design. The

usage transformation functions were defined to transform the number of traversals of SET types, f

or f , to the number of traversals of SET occurrences. For the purpose of this section, however, we
MO

define the usage transformation functions to transform the number of database entries ^(T.R) of

transaction T to the number of traversals of SET occurrences. The two definitions of usage

transformation functions are not inconsistent because f\ and f „ can be derived from f and the
OM MO liN 1

access path tree which will be defined shortly. We also eliminated the parameter PRED assuming

that in a transaction only one database entry occurs.

To derive these functions, we introduce the concept of access path tree developed by Gerritsen

[GER 77]. An access path tree represents the record types, connected by access paths, as well as the

order of visiting them. It is derived consistent with the conceptual schema and is organized in such a

way that the preorder traversal matches the order of visiting the nodes. Figure 9-2 shows an example

of such a tree. The nodes marked Rr R2, etc. represents the record types. Access paths Sp S2 etc.

correspond to the SET types. Associated with each record type R are its cardinality, n , and a

predicate, PRED , that will be applied to its records. The point of entering the database is marked

with DBENTER. In the access path tree we denote the SET type to which the subtree rooted on R.

(or R) is attached as S. (or sct(R)). The symbol '*' represents the member record type of a SET type.

-65-

CHAPTER 9. DESIGN ALGORITHMS FOR MORE-THAN-TWO-VARIABLE TRANSACTIONS

Rl R2 R4 R8
S2 S4 S8

DBENTER O *0 *0* -- O
PREDt |PRED2 |PRED4 PREDfl

S3 I S5 I
* * S

R3 O R5 O *0 R7
PRED3 *PRED5 PRED7

s6|

OPRED,

Figure 9-2: An Access Path Tree.

To achieve usage transformation we use the concept of active records of a SET type in the access

path tree. The set of active records of a SET type corresponds to the result of processing the

transaction had the record types in the subtree connected by the SET not existed in the access path

tree. Accordingly, the number of active records determines the number of traversals of the SET

occurrences to the next record type in the preorder traversal. Thus, the number of traversals of the

SET occurrences is derived as follows:

FOM (T,R,S) = fENT (T.R^X ACTIVE(set(owner(R,S))) (9.1)

FM0 (T,R,S) = fENT (T.R^X ACTIVE(set(R)) (9.2)

where ACTIVE(S) represents the number of active records of SET type S, and owner(R,S) the

owner record type of R with respect to SET type S.

9.2.2 Number of active records

We now proceed to develop an algorithm to obtain the number of active records. We begin with

a simple case and extend it to more complex cases. First, we assume that the access path tree is a

linear list without any branch; then the number of active records of SET type S , can be obtained
n+l

as follows:

ACTIVE(Sn+1) = ACTIVE(Sn)XJR s XgR XSEL(PRED)
n —1' n n—1' n

-66

CHAPTER 9. DESIGN ALGORITHMS FOR MORE-THAN-TWO-VARIABLE TRANSACTIONS

ACTIVE(S2) = njXSELCPRED^

Example 9.2 further illustrates this case.

Example 9.2: Consider an access path tree in Figure 9-3.

R,

DBENTER O-
PRED,

-*0*-
PRED,

R,

-O
PRED,

Figure 9-3: A Simple Access Path Tree without Any Branch.

Associated with the tree are the following data.

Cardinality

^ = 50

n2=200

n2=40

Grouping Factor Join Selectivity Selectivity of Predicate

% S =1

%2,s2=
4

v2
=l

JR

2S2_1

SEL(PRED1)=0.1

SEL(PRED2)=0.5

% S =10

% S =1

R2'S3~
JR =0.5

SEL(PRED3)=0.5

Then, the number of active records in R^ R2, and R3 are

ACTIVE(S2) = 50X0.1 = 5

ACTIVE^) = 5X1X4X0.5 = 10 D

To extend the method of obtaining the number of active records to a more general access path

tree (the tree is no longer is a linear list), we define procedure LABEL that traverses the tree in

preorder, calculates the number of active records, and records the number in the global array of

variables ACTIVE[S]. Here, function Root returns the root node of branch K. A call to

LABEL(R1,RQ) calculates the number of active records and sets the global variables ACTIVE[S] for

all SET types. Here, two arrays of global variables, ACTIVE and TACTIVE, are used.

TACTIVE[R] represents the number of active records when the tree traversal has been completed

67-

CHAPTER 9. DESIGN ALGORITHMS FOR MORE-THAN-TWO-VARIABLE TRANSACTIONS

up to record type R; but, it changes every time the traversal of a branch of record type R is

completed. ACTIVE[S] keeps the value of TACTIVE[R] just before SET type S leading to a branch

of R is traversed. The parameter R-PREV represents the record type connected to R via SET set(R).

Let us note that R-PREV is not the record type last visited.

To set up the initial conditions we create a hypothetical record type RQ and SET type S, such that

TACTIVE[R0]=1, JR s =1, JR s =l,gR s =1, gR s =nr Equivalently, record type RQ has one

record that is linked to all the records of Rx via SET type S,.

procedure LABEL(R, R-PREV)

begin

TACTIVE[R]=TACTIVE[R-PREV]XSEUPREDR)XgRS(R)XJR.pREVS(R)

for every branch B.

begin

ACTI VEfsetCRootCB;))]=T ACTI VE[R]

LABEL(Root(Bi),R)

TACTI VE(R]=TACTI VE[Root(B.)]

end

end

9.2.3 Predicate branch

Procedure LABEL assumes that each record type in the access path tree contributes some data

fields in the output. Sometimes, a branch in the tree is traversed only to check the existence of

related records satisfying the specified predicates. We call this a predicate branch: it serves in its

entirety as one predicate.

In this section we extend the procedure LABEL to incorporate predicate branches. The selectivity

of a predicate branch is given by Ratio(Root(Branch)). To present the function Ratio, we first define

function f that calculates the fraction of records of Fathcr(R) to be selected when R has a restriction

68-

CHAPTER 9. DESIGN ALGORITHMS FOR MORE-THAN-TWO-VARIABLE TRANSACTIONS

predicate having selectivity 'factor'. Function Father returns the father node of R in the access path

tree.

function f(factor, R)

begin

if R has an 1-to-N relationship with its father then

f=factorXJFAraER(RXS(R)

if R has an N-to-1 relationship with its father then
f = WVW 8W factor) / (n/g^)) X JFATHER(R)iS(R)

end

In function f, if R has a 1-to-N relationship with its father, 'factor' and the linkage factor of

father(R) is multiplied to obtain the fraction of records of Father(R) to be selected. On the other

hand, if R has an N-to-1 relationship with its father, the number of set occurrences in R selected by

'factor' is obtained by using the 'b' function first, and the result is divided by the total number of

SET occurrences in R to find the fraction of SET occurrences selected by the predicate; this fraction

is multiplied by the linkage factor of father(R).

With this definition of function f, function Ratio is defined as follows:

function Ratio(R)

if R is a leaf-node then

else

Ratio = SEL(PREDR)

Ratio = SEL(PREDD)

X IT tfRatioCRootCB,)), Root^))
for each branch B. of R

Function Ratio calculates the fraction of records of R to be selected according to all the predicates

specified for the nodes in its subtree, as well as the predicate for R itself. If R is a leaf node, it has

only its own predicate; thus, the value of the function is the selectivity of this predicate. If R is a

nonleaf node, the effective selectivity of all its branches must be multiplied to SEL(PREDR).

69

CHAPTER 9. DESIGN ALGORITHMS FOR MORE-THAN-TWO-VARIABLE TRANSACTIONS

Using functions fand Ratio, procedure LABEL is extended to handle the general case having

predicate branches as follows:

procedure LABEL{R, R-PREV, flag)

begin

TACTIVEfR] = TACTIVE[R-PREV]XSEIXPREDR)Xg^R)XJRpREVS(R)

flag = true

for every branch B.

begin

ACnVElsetOtootfBj))] = TACTIVE[R]

LABELtRootfB^R.flag)

if flag then (B. is a predicate branch)

TACTIVE[R] = TACTIVEtRlXf^RatioCRoottBj)))

else

TACTIVE[R] = TACTIVEtRootCBj)]

end

if any data item of R propagates to the result then flag = false

end

In this procedure a reference parameter 'flag' indicates whether any data items propagate to the

result from the branch B.. If none does, then the branch is a predicate branch, and the current

number of active records are reset to TACTIVEJRlXftRatiotRoot^))). TACTIVEfR] was the

current number of active records just before the traversal of branch B{ started. f^RatioCRootCBj))) is

the effective selectivity for R of all the predicates in branch Br This procedure LABEL can handle

the most general structure of the access path tree including predicate branches.

9.2.4 Discussion

In this subsection we shall investigate a potential problem that violates a condition for separability

in extending the design algorithm to more-than-two-variable transactions for network model

database systems. Just as in relational systems, it seems that the simplest solution is to ignore the

problem. We shall provide some justification for this approximation solution.

70-

CHAPTER 9. DESIGN ALGORITHMS FOR MORE-THAN-TWO-VARIABLE TRANSACTIONS

The number of active records determines the number of traversals of SET occurrences. If

traversals of the SET occurrences are totally random, we can consider them as independent

traversals. However, in some cases the same SET occurrence is traversed more than once

consecutively, and the repeated traversal cannot be considered independent Specifically, we have

this situation when the root node (R^ of the access path tree is a member of a SET type (S), and the

records of RL are accessed according to the order of values of linking data item of this SET type.

This situation happens in the following cases.

1. The records of R, are clustered via set S. These records are accessed by an area scan.

2. The records of R, are accessed through a record order key defined on the linking data
item.

3. The records of Rx are associatively accessed through a key defined (that in turn can be
implemented with an index for example) on the linking data item.

In this situation the records of R: in the same SET occurrence (let us call them a group) that

satisfy the restriction predicate for R, are accessed consecutively. Accordingly, the corresponding

owner record of type R, is repeatedly accessed, and the block containing this record will very likely

reside in the main memory without incurring additional I/O accesses. Furthermore, the record of

the next record type, R3, matching R2 record will also be repeatedly accessed, and the corresponding

block will remain in buffer. Similarly, the records of record types in the rest of the access path tree

that are directly or indirectly related to the records of Rx will be repeatedly accessed reducing the

number of I/O accesses. Let us note that we encountered a similar situation in relational systems

when the inner/outer-loop join method was used.

This situation poses a problem when we design the access configurations of individual record

types separately. In particular, when we design the access configuration of a record type (say R3)

other than R,, there is no way of knowing which access structures Rx would have or which access

structures of R, will be exploited in processing a transaction. As a result, we cannot determine

whether the number of I/O accesses will be reduced due to repeated accesses to the same records.

-71-

CHAPTER 9. DESIGN ALGORITHMS FOR MORE-THAN-TWO-VARIABLE TRANSACTIONS

Although there is no clear solution for this problem, we have reasonable justifications for

designing individual record types separately by simply ignoring the problem. Specifically, we

believe that the error incurred by this approximation is not significant because it does not appear

that the three exceptional cases stated above happen frequently for the following reasons:

1. An area scan is not and must not be used frequently. Thus, Case 1 in page 71 will not
occur frequently.

2. Accessing the records of Rx through a record order key requires scanning every record in
Rj regardless of the predicate specified for it. In this case, it frequently would be less
costly to access owner records first and then access records of member records (R,)
through the SET because the predicate on R2 can reduce the number of accesses to R,.
This reduces the possibility that Case 2 can happen.

3. The restriction predicate on linking data item frequently is specified for the owner
record type; the reverse seems to be rare. For instance, suppose we have two record
types EMPLOYEES and CHILDREN. The CHILDREN is the member record type,
and the data item EMPLOYEE-NAME is the linking data item. Consider a query
"Show AGE, JOB, DEPARTMENT of employee 'John Smith' and all his/her children."
In this case it would be somewhat awkward to specify the predicate
CHILDREN.EMPLOYEE-NAME = 'John Smith' rather than
EMPLOYEES.EMPLOYEE-NAME = "John Smith'. This reduces the possibility that
Case 3 can happen.

4. Exceptional cases more rarely occur especially when the system is implemented
according to the 1971 DBTG Proposal [COD 71]. In this proposal the record order key
and the indexes do not exists. Thus, Cases 2 and 3 never arise, and exceptions can only
occur when an area scan is used, Rx is the clustered via SET which is to be traversed
subsequently, and further Rx is the member type of the SET. It is not likely that this
situation occurs frequently.

-72-

CHAPTER 10. SUMMARY OF THE RESEARCH

10. Summary of the Research

10.1 Summary

A new approach to multifile physical database design was presented. Most previous approaches

towards multifile physical database design concentrated on developing a cost evaluator and its

application in the design aid systems. To accomplish the optimal physical design, however, this

approach had to rely on the designer's intuition or, in the worst case, on an exhaustive search which

is practically in feasible even for moderate-sized databases.

In our approach a theory was developed to partition the entire database design into collective

subproblems. Straightforward heuristics were subsequently employed to incorporate features that

could not be included in the theory. This approach is somewhat formal, deliberately avoiding

excessive reliance on heuristics. Our purpose is to render the whole design phase manageable and to

facilitate understanding of the underlying mechanisms.

In Chapter 2 we introduced the theory of separability. The theory identified the condition for

separability under which the problem of optimal assignment of access structures to the entire

database can be reduced to the subproblems of optimizing individual logical objects independently

of one another.

Application of the theory to the relational database systems was discussed in Chapter 3.

Specifically, it was shown that the set of join methods that consists of the join index method, the

sort-merge method, and the combination of the two satisfies the conditions for separability under

certain constraints. Thus, if the DBMS provides only these join methods, the physical database

design can be partitioned into the designs of individual relations.

Application of the theory to the network model database systems was discussed in Chapter 8. As

in relational systems, it was shown that a large subset of practically important access structures that

are available in the network model database systems satisfies the conditions for separability.

-73-

CHAPTER 10. SUMMARY OF THE RESEARCH

In Chapter 4 three algorithms for the physical design of relational databases were proposed.

Based on the concept of separability, Algorithm 1 and Algorithm 2 design the access configuration

relation by relation. These algorithms were also extended using heuristics to incorporate the

inner/outer-loop join method (a nonseparable join method). On the other hand, Algorithm 3

designs the configuration of the entire database all together. These algorithms were fully

implemented in the Physical Database Design Optimizer (PhyDDO) and tested with simple

situations. The result showed that all three algorithms found optimal solutions in most cases.

Specifically, among the 21 input situations tested, Algorithm 1 found optimal solutions in 19 cases,

Algorithm 2 in 21 cases which are all cases, and Algorithm 3 in 20 cases. Even in the cases in which

nonoptimal solutions were found, the deviations were far from significant (maximum error = 6.6%).

Index selection algorithms for relational databases were presented in Chapter 5. An algorithm

based on the DROP heuristic was introduced for single-file databases and compared with the ADD

heuristic. In an exhaustive test performed, the DROP heuristic found optimal solutions in all cases.

In comparison, the ADD heuristic found nonoptimal solutions in several occasions. This algorithm

based on the Drop heuristic was extended to incorporate the clustering property and also extended

for application to multifile databases.

A comprehensive set of cost formulas for queries, update, insertion, and deletion transactions was

developed in Chapter 6; they were used in the implementation of PhyDDO.

In Chapter 7 we introduced a closed noniterative formula for estimating the number of block

accesses. This formula, an approximation of Yao's exact formula, has a practically negligible error

and significantly reduces the computation time by eliminating the iterative loop found in Yao's

formula. It also achieves a much higher accuracy than an approximation proposed by Cardenas.

Extensions of separability approach to more-than-two variable transactions were briefly discussed

in Chapter 9. This was done by decomposing the transactions into a sequence of two-variable

74

CHAPTER 10. SUMMARY OF THE RESEARCH

transactions. Some properties of decomposition, however, do not satisfy the conditions for

separability. In the proposed methodology this violation was simply ignored. Some justification,

though not complete, was given for this approximation.

The property of separability is a good property to exploit in the physical database design. To take

advantage of this property, as exemplified in Chapters 3 and 8, one has to extract the maximum set

of features that satisfies the conditions for separability; then, extend it using heuristics to incorporate

the features not included in the separable set To incorporate as many features as possible in the first

phase, it is possible to make approximations to the cost formulas and make them separable. The cost

formulas for network model databases developed by Gerritsen (see Appendix B) is a good example;

these cost formulas were made separable by disregarding the possible violation of a condition for

separability explained in Section 9.2. Another way to take advantage of the separability property is

to design the optimizer and the join algorithms in such a way that they satisfy the conditions for

separability. Some examples of the requirements are the availability of the TID intersection

algorithm in manipulating multiple indexes to solve the restriction predicates and the ability of the

join algorithms to take maximum advantage of the coupling effect so that either partial coupling

factors or coupling factors are effective in both directions when the join index method is used.

10.2 Topics for Further Study

In many cases a large number of columns in a relation do not appear in any predicate of any

transaction. An index on a column that does not appear in any predicate cannot contribute to the

reduction of the access cost, but only adds its own maintenance cost. Thus, if we eliminate the

indexes from consideration in a preliminary index selection step before the physical database design

algorithms are invoked, we could reduce the design time significantly.

The design methodology must be extended to include more-than-two-variable transactions. A

preliminary methodology was proposed in Chapter 9. Nevertheless, more elaborate schemes as well

as better justification of the approximations arc subject to further research.

75

CHAPTER 10. SUMMARY OF THE RESEARCH

If a relational DBMS supports additional access structures-such as the linked list structures- the

design algorithm must be modified accordingly. We believe that this can be achieved by including a

separate design step in the iteration loop of the design algorithm.

For network model databases, development and validation of design algorithms including

nonseparable access structures are left to a further study.

The hierarchical database model employed in many existing database systems [WIE 83] were not

considered in this dissertation because it violates one important assumption necessary for the

propery of separability. Hierarchical database store the records of many record types closely

together in a hierarchical format. Thus, records of one record type disturbs the placement of the

records of other record types violating the Condition 1.3 for separability. However, relevant

heuristic employed with simplifying assumptions to incorporate the theory may provide sufficient

accuracy for practical purposes. More research on this possibility is left to further study.

-76

APPENDIX A. SEPARABILITY - AN APPROACH TO PHYSICAL DATABASE DESIGN

Appendix A. Separability - An Approach to
Physical Database Design

This appendix is omitted since it is available from the Proceedings of the Seventh

International Conference on Very Large Databases held in Cannes, France, in

September 1981.

-77-

APPENDIX B. PHYSICAL DESIGN OF NETWORK MODEL DATABASES USING THE PROPERY

OF SEPARABILITY

Appendix B. Physical Design of Network
Model Databases Using the
Propery of Separability

This appendix is omitted since it is available from the Proceedings of the Eighth

International Conference on Very Large Databases held in Mexico City, Mexico in

September 1982.

78

APPENDIX C. ESTIMATING BLOCK ACCESSES IN DATABASE ORGANIZATIONS

Appendix C. Estimating Block Accesses in
Database Organizations

This appendix is omitted since it will be published in the Communications of the

ACM shortly.

-79

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

Appendix D. Physical Design Algorithms for
Multifile Relational Databases

This paper has been submitted for publication. For convenience all the references

have been moved to the end of the thesis.

80

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

Physical Design Algorithms for Multifile Relational Databases

by

Kyu-Young Whang
Computer Systems Laboratory

Stanford University
Stanford, California 94305

Abstract

Three algorithms for the optimal physical design of multifile relational databases are
presented. Each algorithm employs different techniques of partitioning the search space
to reduce the time complexity. The three design algorithms are compared with one
another to validate the heuristics exploited. In an extensive test performed to determine
the optimality of the design algorithms, all three found the optimal solutions in most of
the cases. The time complexities of the design algorithms show a substantial
improvement when compared with the approach of exhaustively searching through all
possible alternatives.

Categories and Subject Descriptors:

H.2.2 [Database Management]: Physical Design—access methods; H.3.2 [Information Storage and

Retrieval]: Information Storage -file organization; H.3.3 [Information Storage and Retrieval]:

Information Search and Retrieval - clustering, retrieval models .

General Terms:

Algorithms, Design

Additional Key Words and Phrases:

physical database design, performance, query optimization, join methods, block accesses, index

selection, selectivity

■x

This work was supported by the Defence Advanced Research Project Agency under the KBMS Project, Contract
N39-82-C-0250.

Authors' current addresses: Computer Systems Laboratory ERL 416, Stanford University, Stanford, California 94305

-81

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

D.1 Introduction

A good design of the physical database has a vital influence on the database performance. As

such, the problem of physical database design has been given much attention in recent years [HSI

70] [CAR 75] [SCH 75] [SEV 75] [HAM 76] [YAO-a 77] [BAT 80] [GER 77] [GAM 77]. The problem

concerns finding an optimal configuration of physical files and auxiliary structures -given the

logical access paths that represent the interconnections among objects in the data model; the usage

patterns of those paths; the organizational characteristics of data stored in the files as well as the

various features provided by a particular database management system(DBMS). In this paper we

use the term access structures as the features that a particular DBMS provides for the physical

database design (e.g., indexes and the property of clustering). We use the term access configuration

of a relation or of the database to mean the aggregate of access structures specified to support a

relation or the entire database. Thus, the access configuration is an abstraction of the physical

database.

In the past much of the research related to the physical database design concentrated on rather

simple cases dealing with a single file. In a database organization that consists of multiple files,

however, the data in different files have complex interrelationships and access patterns; a simple

extension of single file analyses (under the assumption of independency among files) does not

suffice for understanding the interactions among multiple files. Although some efforts (mainly for

developing cost formulas) have been devoted to multifile cases [GER 77] [BAT 80], it is difficult to

use them for the optimal design of physical databases without exhaustively searching all the possible

access configurations of the database. As pointed out in [GER 77], a relevant partitioning of the

entire database is necessary to make the optimal design of the physical database a practical matter.

A theory of separability was introduced in[WHA-a 81] as a formal basis for understanding the

interrelationships among files. In particular, the theory proves that, given a set of join methods that

satisfies a certain property called separability, the problem of designing the optimal physical

82-

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

database can be reduced to the subproblem of optimizing individual relations (each relation is

mapped to a file) independently of one another. Once the problem has been partitioned, the

techniques developed for single-file designs can be applied to solve the subproblems.

In this paper we introduce three algorithms for the optimal physical design of multifile relational

databases. Our objective towards optimality in these algorithms is the minimum number of disk

accesses for processing queries and update transactions. Algorithm 1 and Algorithm 2 are based on

the theory of separability so that the design is performed relation by relation. These algorithms are

also extended, by using heuristics, to include the join methods that are not in the separable set (we

will call them nonseparable join methods). Algorithm 3 does not utilize the property of separability

and designs the entire database all together. Instead, it employes a different partitioning scheme to

reduce the time complexity.

The design algorithms are tested for their optimality by comparing the results they produce with

the optimal solution obtained by searching exhaustively among all the possible access configurations.

When a large database is involved, however, it may be practically impossible to obtain the optimal

solution by an exhaustive search; in this case, the results of the three algorithms are compared to

obtain a solution that is most probably the optimal.

Section D.2 introduces several key assumptions, while Section D.3 describes general classes of

transactions we consider and the transaction processing methods of interest. In Section D.4 we

briefly review the theory of separability. The three design algorithms are introduced in Section D.5.

These algorithms have been fully implemented using a comprehensive set of cost formulas. The test

results, including the accuracy of these algorithms (compared with the optimal solutions) and their

performance (compared with the exhaustive-search method), are also discussed in Section D.5.

More details on the development of the algorithms and the complete set of tests performed can be

found in Appendices J.l and K.

83-

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

D.2 Assumptions

Several key assumptions are used throughout the paper. In principle, some assumptions are not

necessary for Algorithm 3 since this algorithm does not rely on the theory of separability. But, for

the purpose of comparison, we shall apply all the assumption stated in this section to the three

algorithms.

We assume that the DBMS we are considering provides indexes and the clustering property of a

single relation as access structures. Clustering of two or more relations, as is available in many

hierarchical organizations, is not considered. We also assume that all TID (tuple identifier)

manipulations can be performed in the main memory without any need to perform I/O accesses.

The database is assumed to reside on disklike devices. Physical storage space for the database is

divided into units of fixed size called blocks [WIE 83]. The block is not only the unit of disk

allocation, but is also the unit of transfer between main memory and disk. We assume that a block

that contains tuples of a relation contains only the tuples of that relation. Furthermore, we assume

that the blocks containing tuples of a relation, which comprise a file, can be accessed serially.

However, the blocks do not have to be contiguous on disk.

In principle, we assume that a relation is mapped into a single file, an attribute to a column, and a

tuple to a record. Accordingly, we shall use the terms file and relation interchangeably. Nor shall we

make any distinction between an attribute and a column or between a tuple and a record.

Sometimes we need indexes defined for two or more attributes (multiattribute indexes). The

sequence of attributes for which a multiattribute index is defined is mapped into a virtual column.

During the design process a virtual column is considered to be independent from ordinary single-

attribute columns. One exception, however, is that when a virtual column is endowed with the

clustering property, its first component column should have the property too. The virtual columns

arc defined only for semantically appropriate sequences of attributes [WIE 79]. More detailed

treatment on the virtual column can be found in Appendix J.2.

-84-

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

We consider only one-to-many (including one-to-one) relationships between relations. It is

argued in [WHA-b 81] that many-to-many relationships between relations are less important for the

optimization. Note that here we are dealing with relationships between relations based on the

equality of join-attribute values; a relationship among distinct entity sets at the conceptual level is

often structured with an additional intermediate relation [ELM 80].

Finally, we consider only one-variable (one-relation) or two-variable (two-relation) transactions.

For a transaction of more than two variables, a heuristic approach can be employed to decompose it

into a sequence of two-variable transactions. (These correspond to one-overlapping queries in

[WON 76].)

D.3 Transaction Evaluation

D.3.1 Queries

The class of queries we consider is shown in Figure D-l. The conceptual meaning of this class of

queries is as follows. Tuples in relation R: are restricted by restriction predicate Pr Similarly,

tuples in relation R2 are restricted by predicate Pr The resulting tuples from each relation are

joined according to the join predicate RrA = R2.B, and the result projected over the columns <list

of attributesX We call the columns that are involved in the restriction predicates restriction columns,

and those in the join predicate join columns. The actual implementation of this class of queries does

not have to follow the order specified above as long as it produces the same result

SELECT <listofattributes>
FROM Rr R2

WHERE RrA = R2.B AND
P: AND
P2

Figure D-l: General Class of Queries Considered.

Query evaluation algorithms, especially for two-variable queries, have been studied in [BLA 76]

-85-

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

and [YAO 79]. The algorithms for evaluating queries differ significantly in the way they use join

methods. Before discussing the various join methods, let us define some terminology. Given a

query, an index is called a join index if it is defined for the join column of a relation. Likewise, an

index is called a restriction index if it is defined for a restriction column. We use the term subtuple

for a tuple that has been projected over some columns. The restriction predicate in a query for each

relation is decomposed into the form Q1 A Q2, where Qx is a predicate that can be processed by

using indexes, while Q2 cannot. Q2 must be resolved by accessing individual records. We shall call

Qx the index-processible predicate and Q2 the residual predicate.

Some algorithms for processing joins that are of practical importance are summarized below (see

also[BLA76][SEL79]):

• Join Index Method: This method presupposes the existence of join indexes. For each
relation, the TIDs of tuples that satisfy the index processible predicates are obtained by
manipulating the TIDs from each index involved; the resultant TIDs are stored in
temporary relations R^ and R2'. TID pairs with the same join column values are found
by scanning the join column indexes according to the order of the join column values.
As they are found, each TID pair (TID1, TID2) is checked to determine whether TID, is
present in R^ and TID2 in R2'. If they are, the corresponding tuple in one relation, say
Rj, is retrieved. When this tuple satisfies the residual predicate for R., the corresponding
tuple in the other relation R2 is retrieved and the residual.predicate for R2 is checked. If
qualified, the tuples are concatenated and the subtuple of interest is constructed. (We
say that the direction of the join is from R. to R2.)

• Sort-Merge Method: The relations Rx and R2 are scanned-cither by using restriction
indexes, if there is an index-processible predicate in the query, or by scanning the
relation directly-and temporary relations T1 and T2 are created. Restrictions, partial
projections, and the initial step of sorting are performed while the relations are being
initially scanned and stored in Tx and T2. Tj and T2 are sorted by the join column
values. The resulting relations are scanned in parallel and the join is completed by
merging matching tuples.

• Combination of the Join Index Method and the Sort-Merge Method: One relation, say
Rl, is sorted as in the sort-merge method and stored in Tr Relation R2 is processed as in
the join index method, storing the TIDs of the tuples that satisfy the index processible
predicates in R2'. T1 and the join column index of R2 are scanned according to the join
column values. As matching join column values are found, each TID from the join
index of R2 is checked against R2'. If it is in R2', the corresponding tuple in R2 is
retrieved and the residual predicate for R2 is checked. If qualified, the tuples are
concatenated and the subtuple is constructed.

-86-

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

• Inner/Outer-Loop Join Method: In the two join methods described above, the join is
performed by scanning relations in the order of the join column values. In the
inner/outer-loop join, one of the relations, say Rr is scanned without regard to order,
either by using restriction indexes or by scanning the relation directly, and, for each
tuple of Rx that satisfies predicate Pr the tuples of relation R2 that satisfy predicate P2

and the join predicate are retrieved and concatenated with the tuple of Rr The
subtuples of interest are then projected upon the result. (We say the direction of the join

is from R1 to R2.)

Let us note that, in the combination of the join index method and the sort-merge method, the

operation performed on either relation is identical to that performed on one relation in the join

index method or in the sort-merge method. We call the operations performed on each relation join

index method (partial) or sort-merge melhod(pariial), respectively; whenever no confusion arises, we

call these operations simply join index method or sort-merge method. According to the definitions,

the join index method actually consists of two join index methods (partial) and, similarly, the

sort-merge method consists of two sort-merge methods (partial).

D.3.2 Update Transactions

We assume that the updates are performed only on individual relations, although the qualification

part (WHERE clause) may involve more than one relation. Thus, updates are not performed on the

join of two or more relations. (If they are, certain ambiguity arises on which relations to update

[KEL 81].) The class of update transactions we shall be considering is shown in Figure D-2.

UPDATE R:

SET RrC = <new value>
FROM
WHERE

RpR2

RrA =
Pl
P2

R B AND
AND

Figure D-2: General Class of Update Transactions Considered.

The conceptual meaning of this class of transactions is as follows. Tuples in relation R2 are

restricted by restriction predicate P2. Let us call the set of resulting tuples Ty Then, the value for

-87

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

column C of each tuple in Rx is changed to <new value> if the tuple satisfies the restriction predicate

P1 and has a matching tuple in T2 according to the join predicate. In a more familiar syntax [CHA

76], die class of update transactions can be represented as in Figure D-3. The equivalence of the two

representations (only for queries) has been shown in [KIM 82].

UPDATE Rx

SET R^.C = <new value>
WHERE PL AND

RrA IN
(SELECT R2.B
FROM R
WHERE P2)

Figure D-3: An Equivalent Form of the General Class of Update Transactions.

Deletion transactions are specified in an analogous way. It is assumed that insertion transactions

refer only to single relations. From now on, unless any confusion arises, we shall refer to update,

deletion or insertion transactions simply as update transactions.

The update transaction in Figure D-2 can be processed just like queries except that an update

operation is performed instead of concatenating and projecting out the subtuples after relevant

tuples are identified. In particular, all the join methods described in Section D.3.1 can be used for

update transactions as well. But, there are two constraints: 1) The sort-merge method cannot be

used for the relation to be updated since it is meaningless to create a temporary sorted file for that

relation. 2) When the inner/outer-loop "join method is used, the direction of the join must be from

the relation to be updated (R:) to the other relation (R2) because, if the direction were reversed, die

same tuple might be updated more than once. Let us note that, although two-relation update

transactions are not joins, the join predicates (ones that relate two relations) they have can be

processed with the join methods defined for processing joins.

-88

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

D.4 Theory of Separability

To review the design theory based on the concept of separability, we introduce a formal definition

of separability, related terminology, and theorems that are relevant to relational databases. A

detailed development of the theory and the proofs of the theorems can be found in [WHA-a 81].

Definition 1: The join selectivity of a relation R with respect to a join path JP is the ratio of the

number of distinct join column values of the tuples participating in the unconditional join to the

total number of the distinct join column values of R. A join path is a set (R1, RrA, R2, R2.B), where

R, and R, are relations participating in the join and RrA and R2.B are join columns of Rx and R2,

respectively. An unconditional join is a join in which the restrictions in either relation are not

considered. D

Definition 2: A connection is a join path predefined in the schema [WIE 79]. D

Definition 3: The coupling effect from relation Rx to relation R2, with respect to each transaction,

is the ratio of the number of distinct join column values of the tuples of Rr selected according to the

restriction predicate for Rr to the total number of distinct join column values in Ry D

If we assume that the join column values are randomly selected, the coupling effect from Rx to R2

is the same as the ratio of the number of distinct join column values of R2 selected by the effect of

the restriction predicate for Rx to the total number of distinct join column values in R2 participating

in the unconditional join.

Definition 4: A coupling factor Cf,2 from relation Rx to relation R2 with respect to a transaction is

the ratio of the number of distinct join column values of R2, selected by both the coupling effect

from R, (through the restriction predicate for Rx) and the join selectivity of R2, to the total number

of distinct join column values in R2. D

According to the definition, a coupling factor can be obtained by multiplying the coupling effect

-89-

APPENDIX D. PHYSICAL DESIGN ALGORITHMS TOR MULTIFILE RELATIONAL DATABASES

from Rx to R2 by the join selectivity of R2. This coupling factor contains all the consequences of

interactions of relations in the join operation since it includes both coupling and join filtering effects.

Definition 5: A partial-join cost is the part of the join cost that represents the accessing of only one

relation as well as the auxiliary structures defined for that relation. D

Definition 6: A partial-join algorithm is a conceptual component of the algorithm of a join method

whose processing cost is a partial-join cost. D

Definition 7: A set of join methods is separable under certain constraints, if under these

constraints

• Any partial-join algorithm of a join in the set can be combined with any partial-join
algorithm of any join method in the set to form a complete join method, and

• A partial-join cost of any join method in the set can be determined regardless of the
partial-join algorithm used and the access configuration defined for the relation on the
other side of the join. D

Theorem 1: The problem of designing the optimal access configuration of a database can be

decomposed into the tasks of designing the optimal access configuration of individual relations

independently of one another, if the set of join methods used by the DBMS is separable. U

Theorem 2: The set of join methods consisting of the join index method, the sort-merge method,

and the combination method is separable under the constraint that, whenever the join index method

is used for both relations in processing a transaction, the transaction must not have a residual

predicate for at least one relation. D

A violation of the conditions for separability can occur if indexes are missing for some restriction

columns on both relations participating in a join since, then, restriction predicates on both sides will

contain residual predicates. It has been argued in [WHA-a 81], however, that the error in the cost

estimation due to this violation is minimal. This argument has been supported by the results of the

experiments to be presented in Section D.5.

-90

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

Let us note that, in Theorem 2, all the join methods introduced in Section D.3 are included except

for the inner/outer-loop join method. The inner/outer-loop join method is nonseparable and has to

be included in the design algorithms by a heuristic extension.

D.5 Design Algorithms

In this section we introduce three algorithms for the optimal design of multifile physical

databases. The most straightforward method to obtain the optimal access configuration is an

exhaustive search. For even a small input situation, however, this method could be intolerably

time-consuming since its time complexity increases exponentially as the size of the input situation

grows. Thus, we need to partition the design steps judiciously and to develop interfaces that will

minimize interactions among these steps.

The three design algorithms (Algorithms 1, 2, and 3) differ in their use of two partitioning

schemes: horizontal partitioning and vertical partitioning. In the former, based on the theory of

separability, the entire design is partitioned into the designs of individual relations. This scheme is

also extended, by using heuristics, to include the inner/outer-loop join method which cannot be

incorporated by the theory of separability. In the latter, index selection and clustering design are

performed in separate steps during the process of designing a relation or the entire database.

Algorithm 1 employs both horizontal and vertical partitioning; Algorithm 2 only horizontal

partitioning; Algorithm 3 only vertical partitioning.

In Section D.5.1 the design algorithms are described in detail. Their time complexities are

presented in Section D.5.2. Validation of the design algorithms is discussed in Section D.5.3.

91 -

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

D.5.1 Three Algorithms

The three algorithms are illustrated in Figures D-4, D-5, and D-6, respectively. The input

information for and the output results from the design algorithms are as follows:

Input:

• Usage information: A set of various queries and update transactions with their
frequencies.

• Data Characteristics: The logical schema including connections; (for each relation in the
database) cardinality, blocking factor, index blocking factors and selectivities of all
columns, relationships with respect to connections, join selectivities with respect to
connections.

• Derived inputs: Coupling factors with respect to individual two-variable transactions.
(These are derived from the data characteristics and the restriction predicates in the
transactions.)

Output:

• The optimal access configuration of the database, which consists of the optimal position
of the clustering column and the optimal index set for each relation.

• The optimal join method for each two-variable transaction.

D.5.1.1 Algorithm 1

The design is performed in two phases: Phase 1 and Phase 2. These two phases are iterated until

the refinement through the loop becomes negligible (1 %). In Phase 1, based on the theory of

separability, the access configuration is designed relation by relation independently of one another

using only the join methods in the separable set- the join index method, the sort-merge method,

and the combination method. Phase 1 is further divided into two steps: the Index Selection Step

and the Clustering Design Step. In the Index Selection Step an optimal index set is chosen given the

clustering column position determined in the Clustering Design Step of the last iteration. (In the

first iteration, there is no clustering column initially.) In the Clustering Design Step, an optimal

clustering column position is chosen given the index set determined in the Index Selection Step.

92

APPF.NDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

Phase 1

| Index Selection |

| Clustering Design |

Phase 2

| Resolve Inner/Outer-Loop Join |

Relation by Relation

{Join Index Method
Sort-Merge Method
Combination Method}

Entire Database

{All Join Methods}

Figure D-4: Algorithm 1 for the Optimal Design of Physical Databases.

Before introducing the details for these steps, we define the function EVALCOST-1 as follows:

Function EVALCOST-1

Input:

• Access configuration of the relation being considered.

• Set of transactions that arc to be processed in Phase 1 using the inncr/outcr-loop join
method and the direction of the join for each transaction in the set. (These transactions
are identified in Phase 2 of the previous iteration.)

Output:

• Total cost of the relation.

93-

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

I
-V-

Phase 1

Combined Index Selection|
& Clustering Design | I I

Relation by Relation

{Join Index Method
Sort-Merge Method
Combination Method}

Phase 2

Resolve Inner/Outer-Loop Join

Perturbation

Entire Database

{All Join Methods}

Figure D-5: Algorithm 2 for the Optimal Design of Physical Databases.

-V-
NS Index Selection

- Entire Database
| {All Join Methods}

NS Clustering Design

I

- Entire Database
| {All Join Methods}

| YES
V

Figure D-6: Algorithm 3 for the Optimal Design of Physical Databases.

(In the input specification of this function as well as the functions or algorithms introduced later, the

global input information introduced at the beginning of this section is assumed implicit unless stated

otherwise.)

-94-

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

The total cost of a relation is obtained by summing up the costs of single-relation transactions and

the partial-join costs of two-relation transactions that refer to the relation. The cost of each

transaction must be multiplied by its frequency. For each partial-join, the best partial-join algorithm

is selected and its cost calculated. However, if the transaction is supposed to be processed by the

inner/outer-loop join method, that method will be used unconditionally according to the join

direction specified because the inner/outer-loop join method cannot be treated uniformly with

separable join methods in Phase 1 due to its nonseparable nature.)

Using the function EVALCOST-1 defined above, the algorithm for index selection is described as

follows:

Index Selection Step

Input:

• Clustering column position for each relation

• Set of transactions that are to be processed using the inner/outer-loop join method and
the direction of the join for each transaction in the set

Output:

• The optimal index set for each relation with respect to the input information.

Algorithm:

1. Pick one relation and start with an access configuration having a full index set

2. Try to drop one index at a time and apply EVALCOST-1 to the resulting access
configuration to find the index that yields the maximum cost benefit when dropped.

3. Drop that index.

4. Repeat Steps 2 and 3 until there is no further reduction in the cost.

5. Try to drop two indexes at a time and apply EVALCOST-1 to the resulting access
configuration to find the index pair that yields the maximum cost benefit when dropped.

95-

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

6. Drop that pair.

7. Repeat Steps 5 and 6 until there is no further reduction in the cost.

8. Repeat Steps 5, 6, and 7 with three indexes, four indexes, ..., up to k (k must be
predefined) indexes at a time.

9. Repeat the entire procedure for every relation in the database.

The variable k, the maximum number of indexes that are dropped together at a time, must be

supplied to the algorithm by the user. We believe, however, that k=2 suffices in most practical

cases. In fact, in all the tests performed to validate the design algorithms, the maximum value of k

actually exploited was 1 (i.e., no improvement was observed with larger values of k).

The index selection algorithm presented here bears some resemblance to the one introduced by

Hammer and Chan [HAM 76], but it uses the Drop Heuristic [FEL 66] instead of the ADD Heuristic

[KUE 63]. The Drop Heuristic attempts to obtain an optimal solution by incrementally dropping

indexes starting with a full index set. On the other hand, the ADD Heuristic adds indexes

incrementally starting from an initial configuration without any index to reach an optimal solution.

Since we are pursuing a heuristic approach for index selection, the actual result is suboptimal.

However, in most of the cases we tested, the algorithm found optimal solutions. More details on the

index selection algorithm, its validation, and the advantage of the Drop Heuristic over the ADD

Heuristic will be presented in Appendix F.

The Clustering Design Step comes next in Phase 1.

Clustering Design Step

Input:

• Index set for each relation determined in the Index Selection Step.

• Set of transactions that are to be processed using the inner/outer-loop join method, and
the directions of the join for each transaction in the set

-96-

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

Output:

• Optimal position of the clustering column for each relation with respect to the input
information.

Algorithm:

1. Select one relation.

2. Assign the clustering property to one column of the relation.

3. Apply EVALCOST-1 to the resulting access configuration.

4. Shift the clustering property to another column of the relation and repeat Steps 2 and 3.

5. Repeat Step 4 until all the columns of the relation have been considered, including the
configuration having no clustering column is also considered. Then determine the one
that gives the minimal cost as the clustering column (or none).

In Substep 2 the clustering property accompanies an index if the column has not been assigned

one in the Index Selection Step. This strategy slightly enhances the accuracy of the design

algorithms. More details on this strategy as well as other strategies enhancing the accuracy can be

found in Appendix J.I.

The clustering design algorithm amounts to an enumeration of all possible alternatives. However,

because of the restriction that a relation can have at most one clustering column, the time complexity

is only linear on the number of columns in the relation. When a virtual column is involved, there

could be more than one clustering column in a relation since the first component column of a virtual

column that is clustering is itself a clustering column. But, since the two columns are tightly

interlocked, the time complexity is still linear on the number of columns (now including virtual

columns) in the relation.

In Phase 2 the design algorithm is extended to include the inner/outer-loop join method. Since

the inner/outer-loop join method is nonscparable, it cannot be incorporated in Phase 1. Instead, a

separate step (Resolve Inncr/Outcr-Ixwp Join Step) is attached to take a corrective action. Given

-97

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

the access configuration from Phase 1, for each two-relation transaction, the best join method is

selected. If the inner/outer-loop join method happens to be the best one, it is remembered that the

transaction be processed by the inner/outer-loop join method in Phase 1 of the next iteration. Also

remembered is the direction of the join. To describe the algorithm for the Resolve Inner/Outer-

Loop Join Step, we define the function EVALCOST-2.

Function EVALCOST-2

Input:

• Access configuration of the entire database.

Output:

• Total cost of the database.

Side Effect:

• Two-relation transactions that use the inner/outer-loop join method are marked, and
their join directions recorded.

The total cost of the database is obtained by summing up the costs of all transactions multiplied

by their respective frequencies. For each two-relation transaction, the best join method (including

the inner/outer-loop join method) is selected and its cost calculated. As a side effect, if the best join

method for a transaction is the inner/outer-loop join method, a reminder is attached to the

transaction that it must be processed by the inner/outer-loop join method in Phase 1 of the next

iteration. This reminder is one of the elements that interfaces Phase 1 and Phase 2 conveying

information from one phase to another.

The following is the algorithm for Resolve Inner/Outer-Loop Join Step:

Inner/Outer-Loop Join Step

-98-

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

Input:

• The access configuration of the database from Phase 1.

Output:

• Set of transactions to be processed by the inner/outer-joop join method and the
direction of the join for each transaction in the set.

Algorithm:

1. Apply EVALCOST-2 once. The desired output-will be obtained by the side effects of
EVALCOST-2.

The second step of Phase 2 is the Perturbation Step. This step eliminates snags in the design

process incurred by some anomalies. One anomaly is due to the peculiar characteristics of update

transactions; that is, in processing an update transaction, the join index always remains after Phase 1

during the first iteration because the join index method is the only one available to resolve the join

predicate for the relation being updated. (The sort-merge method is not allowed for the relation to

be updated; the inner/outer-loop join method cannot be used in Phase 1 of the first iteration.) A

problem arises in the Resolve Inner/Outer-Loop Join Step when the inner/outer-loop join is costlier

than the join index method, but less costly if the maintenance (update) cost of the join index is

incorporated. In this situation it would be more beneficial to use the inner/outer-loop join method

and drop the join index. But, since the Inner/Outer-Loop Join Step does not incorporate the index

maintenance cost, the algorithm finds the join index method less costly and lets the join index stay.

Hence, we may never have a chance to drop the index. Simply adding the maintenance cost to that

of the join index method will not work since the maintenance cost of an index must be shared by all

transactions accessing that index. Therefore, in the Perturbation step, we try to drop the join index

and compare the total transaction processing costs before and after the change. If the change proves

to be beneficial, the join index is actually dropped.

Another anomaly occurs because we consider the inncr/outcr-loop join method separately from

-99-

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

the other join methods. Sometimes the presence of an index favors performing the inner/outer-loop

join in a certain direction. Dropping that index and reversing the direction of the inner/outer-loop

join, however, may be more beneficial. But, it is impossible to consider this alternative in the

Inner/Outer-Loop Join Step since that step is not allowed to change the access configuration. To

solve this problem, in the Perturbation Step, we also try to drop an arbitrary index (as well as join

indexes) and make the change permanent if it reduces the cost

We generalize this concept and try to add an index as well as to drop one. Here, the algorithm for

the Perturbation Step follows:

Perturbation Step:

Input:

• Access configuration from Phase 1.

• Total cost of the database obtained in the Inner/Outer-Loop Join Step.

Output:

• Modified access configuration of the database.

Algorithm:

1. Pick a column in the database. Try to drop the index if the column has one; otherwise
add one.

2. Obtain the total cost of the database using EVALCOST-2. If the change reduces the
cost, make it permanent.

3. Repeat Steps 1 and 2 for every column in the database.

We note that the Perturbation Step is supposed to accomplish a minor revision in the current

access configuration to eliminate the snags that obstruct a smooth flow of the design process. Thus,

only a small number of columns will be affected by the Perturbation Step; the affected columns

- 100-

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

must be sparsely scattered, and relatively independent of one another. Accordingly, dropping or

adding two or more indexes together is excluded from consideration. For the same reason, an

arbitrary order is chosen in considering the columns.

D.5.1.2 Algorithm 2

Algorithm 2 is almost identical to Algorithm 1 except that the two steps in Phase 1 are combined

in one design step: the Combined Index Selection and Clustering Design Step (Combined Step).

The algorithm is described below:

Combined Step:

Input:

• Set of transactions that are to be processed using the inner/outer-loop join method and
the direction of the join for each transaction in the set.

Output:

• Optimal access configuration for each relation with respect to the input information.

Algorithm:

1. For each clustering column position in a relation, perform index selection

2. Save the best configuration.

As we shall see in Section D.5.2, the time complexity of Algorithm 2 is greater than that of

Algorithm 1. The purpose of merging two steps in Phase 1 into one despite the increase in time

complexity is to validate the heuristic of separating the two steps of Phase 1 (vertical partitioning) in

Algorithm 1. This can be done by comparing the results from Algorithm 1 and Algorithm 2: since

Algorithm 2 does not use vertical partitioning, if the results from the two algorithms are always

identical, we can conclude that the deviations from the optimal solution that may exist have not been

incurred by vertical partitioning.

-101-

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

D.5.1.3 Algorithm 3

Algorithm 3 is different from Algorithms 1 and 2 in that it does not employ horizontal

partitioning and, accordingly, does not rely on the property of separability. The algorithm consists

of one phase which, in turn, is decomposed into two steps: the NS Index Selection Step and the NS

Clustering Design Step (the prefix NS stands for "nonseparable"). The two steps design the access

configuration of the entire database all together rather than relation by relation. All available join

methods are incorporated. The algorithms are described below:

NS Index Selection Step

Input:

• Clustering column positions determined in the NS Clustering Design Step of the last
iteration.

Output:

• Optimal index set of entire database with respect to the given clustering column
positions.

Algorithm:

1. Identical to the Index Selection Step except that the index set is designed for the entire
database at the same time and using the function EVALCOST-2.

NS Clustering Design Step

Input:

• Index set of the database determined in the NS Index Selection Step.

Output:

• Optimal positions of the clustering columns with respect to the given index set

Algorithm:

102-

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

1. Start with an access configuration having no clustering columns.

2. Try to assign the clustering property to one column in the database at a time. Applying
EVALCOST-2, find the column that yields the maximum cost benefit.

3. Assign the clustering property to that column.

4. Repeat Steps 2 and 3 with the constraint that one relation can have at most one
clustering column until there is no further reduction in the cost.

5. Starting with the access configuration from Step 4, try to assign the clustering property to
two columns in the database at a time. One relation can have at most one clustering
column. Applying EVALCOST-2, find the pair that yields the maximum cost benefit.

6. Assign the clustering property to that pair.

7. Repeat Steps 5 and 6 until there is no reduction in the cost.

8. Repeat Steps 5, 6, and 7 with three columns, four columns,..., up to k columns (k must
be predefined) at a time.

As shown in Section D.5.2, the time complexity of Algorithm 3 is much greater than those of

Algorithm 1 and 2. Yet, Algorithm 3 is necessary to validate the horizontal partitioning strategy.

Since horizontal partitioning is based on theory, it is not a heuristic if the set of join methods

available is separable. In Algorithms 1 and 2, however, horizontal partitioning is used even though

the set of join methods considered is not separable because of the inner/outer-loop join method.

This is done by using only the separable set of join methods in Phase 1 that excludes the

inner/outer-loop join method, and by adding Phase 2 to incorporate the inner/outer-loop join

method. Clearly, a heuristic is involved in this procedure, and it oughtto be validated. As Algorithm

3 does not adopt horizontal partitioning, the heuristic can be validated by comparing the results

from Algorithm 1 with that from Algorithm 3.

103

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

D.5.2 Time Complexities of Design Algorithms

In this section we discuss the time complexities of the three design algorithms. Time complexities

are estimated in terms of the number of calls to the cost evaluator (EVALCOST-1 or EVALCOST-2)

which is the costliest operation in the design process. The actual performance measured in the test

runs is summarized in Table 1 in Section D.5.3.

The overall time complexity of Algorithm 1 is 0(tXvk+1) + O(tXc), where t is the number of

transactions specified in the usage information, v the average number of columns in a relation, c the

number of columns in the entire database, and k the maximum number of columns considered

together in the Index Selection Step. Phase 1 contributes to the first term in the complexity; Phase 2

to the second.

Among the two design steps in Phase 1, the Clustering Design Step has a time complexity O(tXv)

which is dominated by that of the Index Selection Step. In the Index Selection Step EVALCOST-1

is called for every k-combination of columns of the relation being considered and for every

transaction that refers to the relation. This contributes the order of (s/r)XtXvk, where r is the

number of relations in the database and s is the average number of relations that a transaction refers

to. (Thus, (s/r) represents die average ratio of the number of transactions referring to a particular

relation to the total number of transactions.) This procedure is repeated until there is no further

reduction in the cost (the number of repetitions is proportional to v). Since the entire procedure is

repeated for every relation, the overall time complexity of Phase 1 is 0(tXvk+1) if we assume that s

is relatively fixed. More detailed derivation of the time complexity of the Index Selection Step can

be found in Appendix J.3.

In Phase 2, the Resolve Inner/Outer-Loop Join Step requires only one call to EVALCOST-2;

thus, it is dominated by the Perturbation Step. The Perturbation Step calls EVALCOST-2 for every

column in the database and for every transaction in the usage. As a result, the time complexity of

this step is O(tXc). Let us note that if v, die average number of columns in a relation, is relatively

fixed, the time complexity of Algorithm 1 is linear on c, the total number of columns in the database.

- 104-

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

The time complexity of Algorithm 2 is almost identical to, but slightly greater than, that of

Algorithm 1. Since the index selection is repeated for every possible clustering column position, the

time complexity of Phase 1 should be multiplied by v, resulting in 0(tXvk+2). Thus, the overall

time complexity becomes 0(tXvk+2) + O(tXc).

The time complexity of Algorithm 3 is estimated to be 0(tXck+1). Both the NS Index Selection

Step and NS Clustering Design Step contribute the same order of complexity. The time

complexities of both steps can be obtained by a derivation similar to the one used for the Index

Selection Step. The only difference is that v, the average number of columns in a relation, is

replaced by c, the number of columns in the database, since the entire database is designed all

together.

In summary, Algorithm 1 is the most efficient since it employs both horizontal partitioning and

vertical partitioning. Algorithm 2 is slightly more complex than Algorithm 1 but faster than

Algorithm 3. Although the formula for the time complexity of Phase 1 of Algorithm 1 resembles

that of Algorithm 3, the former is significantly faster in most practical situations since c is much

greater than v (c/v = number of relations in the database). Yet, all three algorithms are much more

efficient compared with the Exhaustive-Search Method whose time complexity is 0(tX(v+l)rX2c).

(See Appendix J.3 for the derivation.)

D.5.3 Validation of Design Algorithms

An important task in developing heuristic algorithms is their validation. Because physical

database design is such a complex problem, finding mathematical worst-case bounds on the

deviations from the optimality (we shall simply call them deviations) of the solutions produced by

heuristic algorithms is virtually impossible. Consequently, we have to rely on empirical test results

of the algorithms for their validation. In particular, we try to measure the deviations of the heuristic

solutions from the optimal ones for various test input situations. In many cases, however, identifying

the optimal solution itself is a difficult, often impossible, task. For simple situations optimal

- 105-

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

solutions can be obtained by exhaustively searching through all the possible alternatives. For more

complex situations, however, an exhaustive search is practically prohibited by its exponentially

increasing complexity. For example, an input situation consisting of twelve columns in five relations

and twelve transactions generates 1.66 million possible access configurations. (It took a

DECSYSTEM-20 26 hours of CPU time to find the optimal solution.) We have the following

strategy for the validation of the design algorithms:

1. For simple situations the optimal solutions are obtained by exhaustively searching
through all the possible access configurations. The optimal solutions are subsequently
compared with the solutions generated by the design algorithms.

2. For more complex situations the solutions from Algorithms 1, 2, and 3 are considered to
be optimal if all three are identical.

The second rule is based on the discussions in Sections D.5.1.2 and D.5.1.3. In essence, the rule is

valid because it is very unlikely that different sources of deviations (i.e., heuristics) can cause exactly

the same deviations.

The three design algorithms were tested with 21 different input situations (seven different

Schemas with three variations of usage inputs), and the results are summarized in Table 1. In the

first column the first digit of the input situation number represents the schema, and the second the

usage input In the description, r stands for the number of relations, c the number of columns in the

database, and t the number of transactions in the usage input. The CPU time shows the

performance of the algorithms when run in a DECSYSTEM-20. Marked by "*" are the situations in

which any deviation occurred. In most situations tested all three algorithms produced optimal

solutions. Even in the situations that produced nonoptimal solutions, the deviations were far from

being significant. (Algorithm 1 yielded 3.1% of deviation in Situation 50 and 6.6% in Situation 42;

Algorithm 3 yielded 6.6% in Situation 42. These situations are fully analyzed in J.4.)

As we can see in Table 1, an exhaustive search takes excessive computation time even with small

input situations; in comparison, all three algorithms are far more efficient without significant loss of

accuracy. For a very large database (such as the one consisting of 250 relations and 5000 columns),

106-

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

Table 1: Performance and Accuracy of Design Algorithms

|Input Description CPU time(s:seconds;m: minutes;h: hours;y:years)|

jSitua-
tion Algorithml| Algorithm2| Algorithm3| Ex.Search|

| 10 2r, 6c, 7t 0.86s | | 1.25s | | 1.83s ! | 26.91s |

| 20 4r, 9c,10t| 1.23s | | 1.48s | | 5.41s 1 | 36.75m j

| 30 4r, 12c.12t 2.09s | | 3.44s | |10.51s | 13.93h j

| 40 4r, llc,13t 2.04s | | 2.73s | | 6.62s | 3.65h j

| 50 5r, 12c,12t 2.32s | < ► | 4.89s | I12.51S j 25.85h j

| 60 4r, llc,15t 2.63s | | 3.54s | |13.93s | 8.52h j
j 1035 y> j 1 70 16r,110c,81t 1.63m | | 4.80m | | 2.00h

1 11 2r, 6c, 7t 0.84s | | 1.26s | | 1.81s | 26.46s |

1 21 4r, 9c,10t 1.35s | | 1.67s | | 5.91s | 42.83m j

1 31 4r, 12c,12t 2.17s | | 3.43s | |10.67s | 14.00h j

1 41 4r, llc,13t 1.42s | | 1.88s | | 9.90s | 3.62h |

1 51 5r, 12c,12t 3.54s | | 5.00s | |13.13s j 26.63h j

1 61 4r, llc,15t 2.71s | | 3.74s | |21.51s | 8.04h |
| 1035 y* |

1 71 16r,110c,81t 2.13m | | 4.60m | | 2.02h

1 I2 2r, 6c, 5t 0.57s | | 0.86s | | 1.23s | 17.23s |

| 22 | 4r, 9c, 5t 0.43s | | 0.55s | | 1.50s j 10.43m j

| 32 | 4r, 12c, 6t | 1.08s | | 1.73s | | 4.65s j 5.95h j

1 42 | 4r, lie, 6t | 0.25s | * | 0.43s | | 0.95s * | 29.95m j

1 52 | 5r, 12c, 8t | 1.49s | | 2.41s | | 5.04s j 9.95h j

| 62 | 4r, lie, 6t | 1.23s | | 1.81s | | 3.72s 1 1 2.12h |
1 1 io35 yT I 1 72 |16r,110c,38t [21.76s | | 1.77m | |24.40m

f Values are estimated.
* Situations that produced nonoptimal solutions.

however, even Algorithm 3 can become intolerably time-consuming. In these cases Algorithms 1

and 2, which are based on the theory of separability, are the only algorithms applicable. When a

very large database is involved, the entire physical database design somehow has to be partitioned to

achieve a reasonable performance in the design process. The theory of separability provides a

theoretical background to achieve this goal: it provides a clean partitioning and allows us to avoid

overreliance on heuristics which are often difficult to validate.

- 107

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

D.6 Summary and Conclusion

Three algorithms have been presented for the optimal physical design of multifile relational

databases. Each algorithm employs different techniques for partitioning the search space to reduce

the time complexity and is compared to the other algorithms to validate the heuristics involved. All

three algorithms are far more efficient without significant loss of accuracy than the approach of

exhaustively searching through all possible alternatives.

It has been emphasized that the entire design has to be properly partitioned when a very large

database is considered. The theory of separability provides a theoretical basis for this partitioning

and allows us to avoid overreliance on heuristics which are often difficult to justify. (Previous work

[WHA-b 82] has shown that the theory can also be applied to network model databases.)

The primary contribution of this paper is to pioneer the research on the automatic design of

multifile physical databases. The multifile physical design problem has long been considered

"difficult" [LUM 78]. Consequently, to the extent of the author's knowledge, no other successfully

tested algorithm has been reported. (One was presented in [SCH 79], but the issue on its validity has

not been addressed.) We believe that our approach can enable substantial progress to be made

towards the optimal design of multifile physical databases.

108-

APPENDIX D. PHYSICAL DESIGN ALGORITHMS FOR MULTIFILE RELATIONAL DATABASES

Acknowledgment

This work was supported by the Defense Advanced Research Project Agency, under the KBMS

project, Contract Number N39-82-C-0250.

109-

APPENDIXE. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

Appendix E. Transaction-Processing Costs in
Relational Databases

This paper has been submitted for publication. For convenience all the references

have been moved to the end of the thesis.

-110-

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

Transaction Processing Costs in Relational Database Systems

by

Kyu-Young Whang
Computer Systems Laboratory

Stanford University
Stanford, California 94305

Abstract

Accurate estimation of transaction processing costs is important for both query
optimization and physical database design. Although cost formulas have been partially
developed in many articles, it appears that in no place a comprehensive set of cost
formulas have been introduced. In this paper a complete set of formulas for estimating
the costs of queries, update, insertion, and deletion transactions is developed. The costs
are measured in terms of the number of disk accesses. Although the cost formulas are
based on the specific model proposed, the underlying ideas can be easily extended to
other models of database systems.

E.1 Introduction

Since the relational model of data was introduced by Codd [COD 70], many relational database

management systems (DBMS) have been implemented [KIM 79]. A standadizing effort on

relational systems is summarized in [BRO 82]. One of the important characteristics of most

relational DBMS's is the optimizer which automatically translates the transactions expressed in a

nonprocedural language to an optimal sequence of access operations to evaluate the transactions. In

these systems the user need not know the physical structure of the database. Instead, the optimizer

estimates the cost of each possible alternative for processing die transaction based on the given

physical structure of the database and figures out the minimum-cost sequence of access operations.

This procedure has been generally known as query optimization. Various algorithms for query

optimization have been extensively studied in [SMI 75] [PEC 75] [GOT 75] [BLA 76] [YAO 79] [SEL

79].

This work was supported by the Defense Advanced Research Project Agency under the KBMS Project, Contract
N39-82-C-0250.

Author's current address: Computer Systems Laboratory ERL 416, Stanford University, Stanford, California 94305

111-

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

A related issue that has a critical effect on the database performance is physical database design.

The problem addresses the optimal configuration of the physical database so that the minimum

average transaction processing cost is optained [SCH 75] [HAM 76] [KAT 80] [SCH 79] [WHA-a 81].

The information on the physical database will be used by the optimizer at run time to estimate the

costs of processing transactions.

In both problems-query optimization and physical database design-an accurate cost model is

needed to predict the costs of transaction-processing alternatives. Various cost models have been

developed in [HSI 70] [CAR 75] [SEV 75] [BLA 76] [YAO-a 77] [GER 77] [YAO 79] [SEL 79] [SCH

81]. But, in many of them, cost formulas are either only partially developed-either only for queires

or only for update transactions-or too much abstracted to be useful in practical systems.

The purpose of this paper is to introduce a comprehensive set of formulas for estimating the costs

of processing queries, update, insertion, and deletion transactions in relational database systems that

support the clustering (records are clustered if they are stored in the order of values of a column) and

indexes. The costs are measured in terms of the number of disk accesses needed for processing

transactions.

In Section E.2 we introduce key assumptions and the model of the storage structure. Section

E.3 describes the general class of transactions and the transaction processing methods that we

consider. Terminology is defined in Section E.4 to help understand the interactions among different

relations in evaluating transaction-processing costs. Elementary cost formulas are developed in

Section E.5. Finally, the transaction-processing costs are developed in Section E.6 as composites of

elementary cost formulas.

- 112

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

E.2 Assumptions and the Model of Storage Structure

E.2.1 General Assumptions

The database is assumed to reside on disk-like devices. Physical storage space for the database is

divided into fixed-size units called blocks [WIE 83]. The block not only is the unit of disk allocation

but also is the unit of transfer between main memory and disk. We assume that a block that contains

tuples of a relation contains only the tuples ofthat relation. For simplicity, we assume that a relation

is mapped into a single file. Accordingly, from now on, we will use the terms file and relation

interchangeably; nor shall we make any distinction between an attribute and a column or between a

tuple and a record.

We assume that no block access will be incurred if the next tuple (or index entry) to be accessed

resides in the same block as that of the current tuple (or index entry); otherwise, a new block access

is necessary. We also assume that all TID (tuple identifier) manipulations can be performed in main

memory without any need for I/O accesses.

We consider only one-to-many (including one-to-one) relationships between relations. It is

argued in [WHA-b 81] that many-to-many relationships between relations are less important for the

optimization purpose. Note that here we arc dealing with relationships in relational representations

based on the equality of join-attribute values; a relationship among distinct entity sets at the

conceptual level is often structured with an additional intermediate relation [ELM 80].

Finally, we consider only one-variable (one-relation) or two-variable (two-relation) transactions.

The cost for a transaction of more than two variables can be obtained by decomposing it into a

sequence of two-variable transactions. (This corresponds to one-overlapping queries in [WON 76].)

-113-

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

E.2.2 Storage Structure of the Data File

A relation can be sorted according to the order of certain column values (say column A). We say

that column A is the clustering column or that column A has the clustering property. A relation can

have only one clustering column since clustering requires a specific order for storing tuples.

In each block of a file there are slots that contain the byte offsets of data tuples stored in that

block. The addresses of these slots are called tuple identifiers (TID), and the tuples are located by

TIDs. The TID slots provide a level of indirection so that the TIDs remain unchanged even though

the tuples are shuffled in the block according to update, insertion, or deletion operations. When a

new tuple is inserted, a TID slot that is the nearest to the desired place is chosen. This strategy saves

the cost of shuffling data tuples and changing pointers to them. Even though this strategy may not

keep the file strictly sorted according to the clustering column values, it keeps the tuples having close

values near one another.

E.2.3 Storage Structure of the Index

A B+-tree index [COM 79] can be defined for a column of a relation. The leaf-level of the index

consists of (key, TID) pairs for every tuple in that relation and the leaf-level blocks are chained so

that the index can be scanned without traversing the index tree. Enüies having the same key value

are ordered by TID. An index is called a clustering index if it is defined for a clustering column. We

assume that no block is fetched more than once when tuples are retrieved by sequentially scanning

the clustering index. When index entries are inserted or deleted, we assume that, compared with the

accesses to the index blocks themselves, splits or mergers of index blocks are rather infrequent

because these happen only when an index block is either completely full or empty; hence we assume

that modifications are mainly done on the leaf-level blocks.

- 114-

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

E.3 Transaction Evaluation

E.3.1 Queries

The class of queries we consider is shown in Figure E-l. The conceptual meaning of this class of

queries is as follows. Tuples in relation Rx are restricted by restriction predicate Pr Similarly,

tuples in relation R2 are restricted by predicate P2. The resulting tuples from each relation are

joined according to the join predicate RrA = R2.B, and the result is projected over the columns

<list of attributesX We call the columns that are involved in the restriction predicates restriction

columns, and those in the join predicate join columns. The actual implementation of this class of

queries does not have to follow the order specified above as long as it produces the same result

SELECT <listofattributes>
FROM Rr R2

WHERE RrA = R2.B AND
P1 AND
P2

Figure E-l: General Class of Queries Considered.

Query evaluation algorithms, especially for two-variable queries, have been studied in [BLA 76]

and [YAO 79]. The algorithms for evaluating queries differ significantly in the way they use join

methods. Before discussing the various join methods, let us define some terminology. Given a

query, an index is called a join index if it is defined for the join column of a relation. Likewise, an

index is called a restriction index if it is "defined for a restriction column. We use the term subluple

for a tuple that has been projected over some columns. The restriction predicate in a query for each

relation is decomposed into the form Q1 A Q2, where Qx is a predicate that can be processed by

using indexes, while Q, cannot. Q2 must be resolved by accessing individual records. We shall call

Q. the index-processible predicate and Q2the residual predicate.

Some algorithms for processing joins that are of practical importance are summarized below (see

also [BLA 76] [SEL 79]):

115-

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

• Join Index Method: This method presupposes the existence of join indexes. For each
relation, the TIDs of tuples that satisfy the index processible predicates are obtained by
manipulating the TIDs from each index involved; the resultant TIDs are stored in
temporary relations Rx' and R2'. TID pairs with the same join column values are found
by scanning the join column indexes according to the order of the join column values.
As they are found, each TID pair (TIDr TID2) is checked to determine whether TIDj is
present in R^ and TID2 in R2'. If they are, the corresponding tuple in one relation, say
Rp is retrieved. When this tuple satisfies the residual predicate for Rr the corresponding
tuple in the other relation R2 is retrieved and the residual predicate for R2 is checked. If
qualified, the tuples are concatenated and the subtuple of interest is constructed. (We
say that the direction of the join is from Rx to R2.)

• Sort-Merge Method: The relations Rx and R2 are scanned-either by using restriction
indexes, if there is an index-processible predicate in the query, or by scanning the
relation directly-and temporary relations Tx and T2 are created. Restrictions, partial
projections, and the initial step of sorting are performed while the relations are being
initially scanned and stored in Tx and T2. Tj and T2 are sorted by the join column
values. The resulting relations are scanned in parallel and the join is completed by
merging matching tuples.

• Combination of the Join Index Method and the Sort-Merge Method: One relation, say
Rl, is sorted as in the sort-merge method and stored in Tr Relation R2 is processed as in
the join index method, storing the TIDs of the tuples that satisfy the index processible
predicates in R2'. T1 and the join column index of R2 are scanned according to the join
column values. As matching join column values are found, each TID from the join
index of R2 is checked against R2'. If it is in R2', the corresponding tuple in R2 is
retrieved and the residual predicate for R2 is checked. If qualified, the tuples are
concatenated and the subtuple is constructed.

• Inner/Outer-Loop Join Method: In the two join methods described above, the join is
performed by scanning relations in the order of the join column values. In the
inner/outer-loop join, one of the relations, say Rp is scanned without regard to order,
either by using restriction indexes or by scanning the relation directly, and, for each
tuple of Rx that satisfies predicate Pp the tuples of relation R2 that satisfy predicate P2

and the join predicate are retrieved and concatenated with the tuple of R.. The
subtuples of interest are then projected upon the result. (We say the direction of the join
is from R, to R2.)

Let us note that, in the combination of the join index method and the sort-merge method, the

operation performed on either relation is identical to that performed on one relation in the join

index method or in the sort-merge method. We call the operations performed on each relation join

index method (partial) or sort-merge method (partial), respectively; whenever no confusion arises, we

call these operations simply join index method or sort-merge method. According to the definitions,

116-

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

the join index method actually consists of two join index methods (partial) and, similarly, the

sort-merge method consists of two sort-merge methods (partial).

E.3.2 Update Transactions

We assume that the updates are performed only on individual relations, although the qualification

part (WHERE clause) may involve more than one relation. Thus, updates are not performed on the

join of two or more relations. (If they are, ambiguity may arise on which relations to update [KEL

81].) The class of update transactions we shall consider ig shown in Figure E-2.

UPDATE Rx

SET RrC = <new value>
FROM Rr R2

WHERE RrA = R2.B AND
P1 AND
P2

Figure E-2: General Class of Update Transactions Considered.

The conceptual meaning of this class of transactions is as follows. Tuples in relation R2 are

restricted by restriction predicate P2. Let us call the set of resulting tuples T2> Then, the value for

column C of each tuple in R. is changed to <ncw value> if the tuple satisfies the restriction predicate

Pj and has a matching tuple in T2 according to the join predicate. In a more familiar syntax [CHA

76], the class of update transactions can be represented as in Figure E-3. The equivalence of the two

representations (only for queries) has been shown in [KIM 82].

UPDATE Rx

SET RrC = <new value>
WHERE P1 AND

RrA IN
(SELECT R2.B
FROM R2

WHERE P2)

Figure E-3: An Equivalent Form of the General Class of Update Transactions.

- 117-

APPENDIXE. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

Deletion transactions are specified in an analogous way. It is assumed that insertion transactions

refer only to single relations. From now on, unless confusion may occur, we shall refer to update,

deletion or insertion transactions simply as update transactions.

The update transaction in Figure E-2 can be processed just like queries except that an update

operation is performed instead of concatenating and projecting out the subtuples after relevant

tuples are identified. In particular, all the join methods described in Section E.3.1 can be used for

update transactions as well. But, there are two constraints: 1) The sort-merge method cannot be

used for the relation to be updated since it is meaningless to create a temporary sorted file for that

relation. 2) When the inner/outer-loop join method is used, the direction of the join must be from

the relation to be updated (R,) to the other relation (R2) because, if the direction were reversed, the

same tuple might be updated more than once. Let us note that, although two-relation update

transactions are not joins, the join predicates-which relate two relations— they have can be

processed with the join methods defined for processing joins.

E.4 Terminology

E.4.1 Notation

R
Other(R)
C
nR

PR

cc
mR

im,
t
H, t,R

: A relation.
: The relation to be joined with R.
: A column.
: Number of tuples in relation R (cardinality).
: Blocking factor of relation R.
: Blocking factor of the index for column C.
: Selectivity of column C or its index
: Subscript for the clustering column.
: Number of blocks in relation R, which is equal to nR/pR-
: Number of blocks that the index for column C occupies.
: A transaction
: Projection factor of transaction t on relation R.

- 118-

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

E.4.2 Definition of Terms

Definition 1: The join selectivity JSELR Jp of a relation R with respect to a join path JP is the ratio

of the number of distinct join column values of the tuples participating in the unconditional join to

the total number of distinct join column values of R. A join path is a set (Rp RrA, R2, R2.B), where

R, and R, are relations participating in the join and RrA and R2.B are join columns of Rx and R2.

An unconditional join is a join in which the restrictions on either relation are not considered. O

Join selectivity is the same as the ratio of the number of tuples participating in the unconditional

join to the total number of tuples in the relation (cardinality of the relation). Join selectivity is

generally different in Rx and R2 with respect to a join path as shown in the following example:

Example 1: Let us assume that the two relations in Figure E-4 have an 1-to-N partial-dependency

relationship. Partial dependency means that every tuple in the relation R2 that is on the N-side of

the relationship has a corresponding tuple in Rp but not vice versa [ELM 80]. Let us assume that

50% of the countries have at least one ship so that the tuples representing those countries participate

in the unconditional join. Every tuple in the SHIPS relation (R2) participates in the unconditional

join according to the partial dependency. The join selectivity of the COUNTRIES relation is then

0.5, while that of the SHIPS relation is 1.0. D

Rx COUNTRIES(Countryname, Population)

R2 SHIPS(ShipId, Country, Crewsize, Deadweight)

Figure E-4: COUNTRIES and SHIPS relations

Definition 2: The coupling effect (partial coupling effect) from relation Rx to relation R2, with

respect to each transaction, is the ratio of the number of distinct join column values of the tuples of

Rr selected according to the restriction predicate (index-proccssible predicate) for Rp to the total

number of distinct join column values in Rr D

119-

APPENDIXE. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

If we assume that the join column values are randomly selected, the coupling effect (partial

coupling effect) from Rx to R2 is the same as the ratio of the number of distinct join column values

of R2 selected by the effect of the restriction predicate (index-processible predicate) for Rx to the

total number of distinct join column values in R2 participating in the unconditional join.

Definition 3: A coupling factor Cf^ (partial coupling factor PCf12) from relation Rx to relation R2

with respect to a transaction is the ratio of the number of distinct join column values of R2, selected

by both the coupling effect (partial coupling effect) from Rx (through the restriction predicate for

Rx) and the join selectivity of R2, to the total number of distinct join column values in R,. D

According to the definition, a coupling factor can be obtained by multiplying the coupling effect

(partial coupling effect) from Rx to R2 by the join selectivity of R2.

Definition 4: A partial-join cost is the part of the join cost that represents the accessing of only one

relation as well as the auxiliary structures defined for that relation. D

Definition 5: A partial-join algorithm is a conceptual division of the algorithm of a join method

whose processing cost is a partial-join cost. D

Definition 6: The restricted set of relation R with respect to a transaction is the set of tuples of R

selected according to the restriction predicate for R. D

Definition 7: The partially restricted set of relation R with respect to a transaction is the set of

tuples of R selected according to the index-processible predicate for R. D

Definition 8: The coupled set of relation Rx with respect to a transaction is the set of tuples in R.

selected according to the coupling factor from R2. D

Definition 9: The partially coupled set of relation R, with respect to a transaction is the set of

tuples of Rx selected according to the partial coupling factor from R2< D

- 120-

APPENDIXE. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

Definition 10: The result set of relation R with respect to a transaction is the intersection of the

restricted set and the coupled set. Thus, the tuples in the result set satisfy all the predicates in a

transaction. D

Definition 6 to Definition 10 define various subsets of the relation according to the predicates

they satisfy. In Figure E-5 these subsets are graphically illustrated. Cardinalities of subsets of

relation Rj can be obtained as follows:

|restricted set| = nR X Selectivity of the restriction predicate

Ipartially restricted set| = nR X Selectivity of the index-processible predicate

|coupled set| = nR X Cf21

Ipartially coupled set| = nR X PCf21

|result set| - nR X Cf21 X Selectivity of the restriction predicate

To estimate the selectivities of the predicates, we use the following simple scheme. If a predicate

is the conjunction of simple predicates that involve single columns, its selectivity can be obtained by

multiplying the selectivities of those simple predicates. The selectivity of a simple equality predicate

is estimated as the inverse of the number of distinct values in the related column (column

cardinality). For a simple range predicate, which involves operators such as <, <, >, >, the

selectivity is arbitrarily estimated as 1/4. (A more elaborate interpolation scheme can be employed

if the highest and the lowest values in the column are known.) Estimating the selectivities of more

general predicates has been studied in [DEM 80].

We now introduce a function that estimates the number of block accesses when randomly selected

tuples are retrieved in TID order. Various formulas have been proposed for this function [CAR 75]

[ROT 74] [SEV 72] [SIL 76] [WAT 72] [WAT 75] [WAT 76] [YAO-b 77] [YUE 75]. In particular,

Yao [YAO-b 77] presented the following theorem:

Theorem 1: [YAO] Let n records be grouped into m blocks (l<m<n), each containing p = n/m

records. If k records arc randomly selected from the n records, the expected number of blocks hit

(blocks with at least one record selected) is given by

- 121-

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

Figure E-5: Various Subsets of a Relation.

- 122-

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

b(m,p,k)=m[l-(£-")/(£)] (E.1)

= m[l - ((n-p)!(n-k)!)/((n-p-k)!n!)]

=m[l - nf=1(n-p-i+l)/(n-i+l)]

whenk<n—p, and

b(m,p,k)=m when k > n - p.

The function is approximately linear on k when k«n and approaches p as k becomes large.

Variations of this function and approximation formulas for faster evaluation are summarized in

[WHA-a 82]. Let us note that the function is invalid if m<l.

E.5 Elementary Cost Formulas

To formulate the transaction-processing costs, we first develop cost formulas for elementary

operations. Elementary cost formulas mainly concerns the costs related to a single relation and its

auxiliary access structures.

When more than one tuple (or index entry) is retrieved or updated, the relative order of accessing

those tuples (or index entries) becomes important in determining the cost. Below, we define four

types of ordering:

• TID order: Tuples (or index entries) are accessed according to the order of TID. TID
order can be achieved when a relation or an index is scanned or when tuples are accessed
with matching keys through one or more indexes. Let us note that the index entries
having the same key value are ordered by TID.

• Random order: Tuples (or index entries) are randomly accessed without any specific
order.

• Clustering column order: Tuples are accessed by scanning the clustering index. This
ordering specifies the orders of accessing both data tuples and index entries: both are
accessed in TID order. This ordering differs from TID order of accessing tuples in that,
when a tuple is accessed, the location of the corresponding entry in the clustering index
is already known. We define both TID order and clustering column order as physical
order.

123

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

»Ordering column order: Tuples are accessed by scanning the index of the ordering
column. This ordering specifies the orders of accessing both data tuples and index
entries: tuples are accessed in random order; index entries in TID order. As in clustering
column order, when a tuple is accessed, the location of its corresponding entry in the
ordering index is already known. This ordering occurs when the join index method is
used to resolve the join predicate; here, the join column becomes the ordering column.

Elementary cost formulas are now introduced in the form of functions in the following. Each

function will be followed by subsequent explanation on how it has been derived. In calculating the

cost of a query, we do not include the cost of writing the result since that cost is common to all

alternative processing methods and is irrelevant for optimization purposes.

• function IA(C,R,mode): Index Access Cost-cost for accessing the index tree starting from

the root

A. mode = Query mode

IA = pogL nRl + ("FcXnR/Lc] (E.2)

B. mode = Insertion mode

IA = pogLcnRl + l

C. mode = Update mode

IA = riogL nRl + [0.5XFcXnR/Lcl

The function IA has three modes depending on the purpose of accessing the index. In query

mode all the index entries having the same key value are retrieved. The first term in Equation

(E.2) is the height of the index tree, and the second the number of leaf-level index blocks accessed.

In insertion mode, an index entry corresponding to the inserted tuple is placed after the last entry

having the same key value; thus, only one leaf-level block will be accessed. In update mode, the

index entries containing the old value have to be searched to find the one having the TID of the

updated tuple; thus, on the average, about half of those index entries will be searched.

• function IS(C,R): Index Scan Cost-cost for serially scanning the leaf-level blocks of an

entire index.

- 124-

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

IS = rnR/Lc]

• function Sort(NB,z): Sorting Cost-cost for sorting a relation, or a part thereof, according

to the values of the columns of interest.

SORT = 2X[NB1 + 2X[NBlX[logjNBH

Function Sort represents the cost of an external sort using the z-way sort merge [KNU-b 73]. NB

is the number of blocks in the temporary relation containing the subtuples to be sorted after

restriction and projection have been resolved. It will be noted that function Sort does not include

the initial scanning cost to bring in the original relation, while it does include the cost to scan the

temporary relation for the actual join after sorting (see [BLA 76]).

• function Single-Query(R,t,mode): Single-Relation Querying Cost- cost for retrieving

tuples that satisfy the restriction predicates from a single relation.

A. If no restriction index is clustering

Single-Query = b(mR,pR,|partially restricted set|) (E.3)

+ 2 IA(C,R,query mode)
C€ {all restriction columns having indexes}

B. If any restriction index is clustering

a. whenF^Xm^l

Single-Query = b(FccXmR,pR,|partially restricted set|) (E.4)

+ 2 IA(C,R,query mode)
C€{all restriction columns having indexes}

b. when FttXmR<l

Single-Query = F^Xba/F^F^Xn^lpartially restricted seüVF^) (E.5)

+ 2 IA(C,R,query mode)
C€{all restriction columns having indexes}

The function Single-Query has two modes: "join column included" and "join column not

-125-

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

included". In the former mode-the join predicate is treated as another restriction predicate.

Accordingly, the join column becomes a restriction column, and the join index becomes a restriction

index. The partially restricted set also has to be modified. This mode is useful when considering the

cost of the inner/outer-loop join method. In this method, a value is substituted for the join attribute

of Other(R). Resolving the join predicate for relation R then becomes a simple restriction.

Single-relation queries are processed as follows: Each restriction index is accessed in query mode

to obtain the list of TIDs satisfying the corresponding simple restriction predicate. The intersection

of these TID lists is formed subsequently to locate tuples satisfying the index-processible predicate.

The first terms in Equations (E.3), (E.4), and (E.5) represent the cost of accessing data tuples; the

second the cost of accessing indexes.

We have two cases in calculating the cost of accessing data tuples. If no restriction index is

clustering, the tuples in the partially restricted set will be spread all over mR blocks. Since they are

accessed in TID order, we obtain the first term of Equation (E.3). On the other hand, if one of the

restriction indexes is clustering, the tuples to be retrieved are confined in F^Xn^ blocks (let us call

this a selected area). Since tuples are accessed in TID order within the selected area, if F XmD>l,
CC j£—..

we obtain the first term of Equation (E.4). If F XmD<l, however, the "b" function becomes

invalid, and we need an alternative derivation. Let us assume that the selected area resides within a

physical block (i.e., we ignore the case in which the selected area resides on the border of two blocks)

and imagine that the file is divided into (1/F^) logical blocks of the same size as the selected area.

Then, the probability that the selected area will be hit when all the restriction predicates except for

the one matching the clustering index are applied can be obtained as the first term of Equation (E.5).

It is also the probability that the physical block containing the selected area will be hit Since this

physical block is the only one that can be possibly be accessed, the number of physical blocks to be

hit is equivalent to this probability.

• function Sort-Mcrgc(R,t): Partial Sort-Merge Join Cost-cost for joining the relation R with

another using the sort-merge join method(partial).

-126-

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

Sort-Mergc = Single-Query <R,t join column not included) + Sort(NB),

where

NB = flrestricted set|/nR)XHuRXmR.

First, tuples in the partially restricted set are retrieved using the restriction indexes (this

corresponds to a single-relation query). Those tuples are sorted and stored in a temporary relation

after the residual predicate and the projection are resolved; the temporary relation is subsequently

read in for an actual join. The term Sort(NB) includes all the cost for this operation.

• function Join-Index(R,t,Cf): Partial Join-Index Join Cost-cost for joining relation R with

another using the join index method(partial).

Join-Index = Index Read Cost + Data Read Cost

(Index Read Cost)

Index Read Cost = 2 IA(C,R,query mode) + IS(join index, R)
C€{all restriction columns having indexes}

(Data Read Cost)
A. If the join index is nonclustering

Data Read Cost = Cf X |partially restricted set| (E.6)

B. If the join index is clustering

Data Read Cost = b(mR,Pi;..CfX|partially restricted set|)

Here, the parameter Cf can be cither the coupling factor or the partial coupling factor from

relation Othcr(R) to relation R. If the tuples of R are accessed first during the join operation, Cf is a

partial coupling factor since only the index-processible predicate for Other(R) can be resolved

before tuples of R are accessed. On the other hand, if the tuples of Other(R) are accessed first, Cf

must be a coupling factor since full restriction predicate is resolved for Othcr(R) beforehand. In

either case, Cf can be treated as yet another restriction factor as far as relation R is concerned. It will

- 127-

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

be noted that, if all restriction columns have indexes, the partial coupling factor is equivalent to the

coupling factor.

The Partial Join-Index Join Cost consists of two parts: Index Read Cost and Data Read Cost.

The cost of reading relevant indexes (Index Read Cost) includes the cost of accessing all restriction

indexes and the cost of scanning the join index. The cost of retrieving tuples from the relation (Data

Read Cost) differs according to whether the join index is clustering or not. If the join index is not

clustering, tuples are retrieved in random order as the join index is scanned. Since one block access

is necessary for each tuple, we obtain Equation (E.6). If the join index is clustering, since tuples are

retrieved in TID order, the "b" function has to be employed.

• function Inner/Outer(R,t,To-or-From): Partial Inner/Outer-Loop Join Cost-cost for

joining relation R with another using the inner/outer-loop join method(partial).

A. To-or-From = From

Inner/Outer = Single-Query(R,t join column not included)

B. To-or-From = To

Inner/Outer = [restricted set of Other(R)| X JselQth ,R)X

Single-Query(R,tjoin column included)

+ Irestricted set of Other(R)| X(l - Jsel0the ,R))X

2 IA(C,R,qucry mode)
C€{all restriction columns and the join column having indexes}

The cost of the inner/outer-loop join method differs depending on the join direction, which is

determined by the parameter To-or-From. If the join direction is from R to Othcr(R) (To-or-From

= From), the processing cost for R simply becomes that of a single-relation query with the mode

"join index not included". However, if the join direction is reversed (To-or-From = To), the cost

for R can be obtained, in principle, by summing up the costs of single-relation queries each of which

is associated with a tuple in the restricted set of Other(R). The cost formula consists of two terms.

- 128

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

The first term is multiplied by the function Single-Query with the mode "join column included".

But, the second term is multiplied by the access costs of indexes only, because the single-relation

queries corresponding to the tuples of Other(R) having join column values nonexistent in R will

retrieve no data tuples.

• function Delete(R,t,order,Ntuples-dcletcd): Deletion Cost-cost for deleting Ntuples-

deleted tuples from relation R according to the order specified in parameter "order".

Delete = Data Write Cost + Index Read/Write Cost

A. Deletion is performed in physical order

(Mfactor = 1 if deletion is performed in clustering column order.)

(M factor = 2 if deletion is performed in TID order.)

A.l. If no restriction column is clustering

(Data Write Cost)

Data Write Cost = b(mR,pR,Ntuples-deleted) (E.7)

(Index Read/Write Cost)

a. If the clustering column does not have an index or there is no clustering column

Index Read/Write Cost = Ntuples-deleted X 2 [IA(C,R,updatemode)+l]
C€{all columns having indexes}

b. If the clustering column has an index

Index Read/Write Cost = Ntuples-deleted X

2 [IA(C,R,update mode)+1]
C€{all columns having indexes except for the clustering column}

+ MfactorXb(imcc,Lcc,Ntuples-deleted)

A.2. If a restriction column is clustering

(Data Write Cost)

a. whcnF XmD>l
CC K^

- 129-

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

Data Write Cost = b(FccXmR,pR>Ntuples-deleted) (E.8)

b. when F XmD<l
CC K

Data Write Cost = F^Xba/F^F^Xn^Ntuples-deleted/F^) (E.9)

(Index Read/Write Cost)

a. If the clustering column does not have an index

Index Read/Write Cost = Ntuples-deleted X 2 [IA(C,R,updatemode)+l]
C€{all columns having indexes}

b. If the clustering column has an index

b.l. whenF Xim >1 cc cc—

Index Read/Write Cost = Ntuples-deletedX

2 [IA(C,R,update mode)+1]
C€{all columns having indexes except for the clustering column}

+ Mfactor X b(FccXimcc,Lcc,Ntuples-deleted)

b.2. whenF Xim <1 cc cc

Index Read/Write Cost = Ntuples-deletedX

2 [IA(C,R,updatemode)+l]
C€{all columns having indexes except for the clustering column}

+ MfactorXFccXb(l/Fcc,FccXnR,Ntuples-deleted/Fcc)

B. Deletion is performed in ordering column order.

(Data Write Cost)

Data Write Cost = Ntuples-deleted (E.10)

(Index Read/Write Cost)

B.l. If the ordering column is not a restriction column

Index Read/Write Cost = Ntuples-deletedX

2 [IA(C,R,update mode)+1]
C€{all columns having indexes except for the ordering column}

-130

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

B.2. If the ordering column is a restriction column

^W^F'orderco^^ordercol^1

Index Read/Write Cost = Ntuples-deletedX

2 [IA(C,R,update mode)+1]
C€{all columns having indexes except for the ordering column}

+ border colXimordercol'Lordercol'NtUPleS-deleted)

b-^Fordercol^order«/1

Index Read/Write Cost = Ntuples-deletedX

2 [IA(C,R,updatemode)+l]
C€{all columns having indexes except for the ordering column}

+ Fordcr colXb^1/Forder col,Forder colXnR'

Ntuples-deleted/FordercoI)

The deletion cost consists of two parts: Data Write Cost and Index Read/Write Cost. The former

is the cost of writing the modified data blocks out to the disk. (In formulating the deletion cost, the

data blocks are assumed to have already been read in the main memory.) For each tuple deleted, the

corresponding index entry should also be deleted. Thus, the latter cost includes the cost of reading

in the index blocks to be modified and the cost of writing them back to the disk.

The Data Write Cost differs according to the order of deleting the tuples. If deletion is performed

in physical order, the "b" function has to be employed in all cases; we have two subcases. If no

restriction column is clustering, tuples can be deleted from any one of the mR blocks; thus, we

obtain Equation (E.8). On the other hand, if any restriction column is clustering, tuples to be

deleted are confined in F XmR blocks. Hence, if F XmR>l, we obtain Equation (E.8). If

F Xm„<l, according to the same argument as has been used for the function Single-Query, we
CC K

obtain Equation (E.9). If deletion is performed in ordering column order, tuples to be deleted are

accessed in random order. Thus, as many block accesses are incurred as the number of tuples deleted

(Equation (RIO)).

The Index Read/Write Cost is obtained as follows. In general, for each index, locating the index

131

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

entry corresponding to the deleted tuple requires accessing the index from the root with update

mode; writing the modified index block needs one block access. When the tuples are deleted in

physical order, however, special consideration must be given to the clustering index. First, since the

entries in the clustering index are deleted in TID order, the "b" function is employed. If no

restriction column is clustering, the index entries to be selected are spread all over im blocks;

however, if a restriction column is clustering, those index entries are confined in F Xim blocks,
cc cc

and again a consideration similar to the one applied to function Single-Query has to be made.

Mfactor (multiplying factor) is 1 if only writing cost of the modified blocks of the clustering index is

needed (when tuples are deleted in clustering column order). Mfactor is 2 if both reading and

writing costs of index blocks are considered (when tuples are deleted in TID order). When deletion

is performed according to the ordering column order, the Index Read/Write Cost is obtained just as

in the case of the clustering column order, except that the ordering column replaces the clustering

column.

• function Insert(R,t,Ntuples-inscrtcd): Insertion Cost-cost for inserting Ntuples-inserted

tuples in relation R.

Insert = Data Read Cost + Data Write Cost + Index Read/Write Cost

A. If the clustering column does not exist

Data Read Cost = Ntuples-inserted

Data Write Cost = Ntuples-inserted

Index Read/Write Cost = Ntuples-insertedxS [IA(C,R,insertionmode)+l]
C€{all columns having indexes}

B. If the clustering column exists and has an index

Data Read Cost = Ntuples-insertcdX[IA(clustering column,R,insertion mode)+l]

Data Write Cost = Ntuples-inserted

-132-

APPENDIXE. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

Index Read/Write Cost = Ntuples-insertedX {

2 [IA(C,R,update mode)+1]
C£{all columns having indexes except for the clustering column}

+ 1}

C. If the clustering column exists, but does not have an index

Data Read Cost = N tuples-insertedX|mR/2]

Data Write Cost = Ntuples-inserted

Index Read/Write Cost = Ntuples-insertedX 2 [IA(C,R,updatemode)-l-l]
C€{all columns having indexes}

For simplicity, we consider only the cases in which tuples are inserted in random order. (Unlike

the deletion cost, the insertion cost includes the cost of reading in the data blocks.) The cases in

which tuples are inserted in physical order or ordering column order can be analyzed using the same

technique as has been used for the deletion cost. The insertion cost consists of three parts: Data

Read Cost, Data Write Cost, and Index Read/Write Cost. The first is the cost of locating the places

to insert new tuples. The second is that of writing modified data blocks. The third is that of

updating the indexes accordingly.

If there is no clustering column (Case A), tuples can be inserted at the end of the relation. Thus,

reading and writing the block into which a tuple is to be inserted cause one block access,

respectively. The location into which the index entry corresponding to the inserted tuple is to be

placed can be found by accessing the index from the root with insertion mode using the value of the

corresponding column of the inserted tuple as the key; this operation causes IA(C,R,insertion mode)

block accesses. Function IA is invoked in insertion mode because the new index entry must have

the largest TID value. Writing the modified index block causes one block access.

133-

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

If the clustering column exists and has an index (Case B), the place into which the tuple is to be

inserted can be found through the clustering index using insertion mode; this operation causes

IA(clustering column,R,insertion mode) block accesses. One more block access is needed to read the

data block. Writing the modified data block also causes one block access. The Index Read/Write

Cost is obtained in a way similar to Case A, but an update mode must be used for function IA since

index entries having the same key value must be ordered according to their TIDs. Excluded from

the Index Read/Write Cost is the cost for reading the clustering index since it has already been

included in the Data Write Cost; but, one block access must be added to account for the cost of

writing the modified clustering index block.

If the clustering column exists, but does not have an index (Case C), the relation has to be

sequentially searched to locate the place for insertion, causing on the average [mR/2] block accesses.

Writing the modified block requires one block access. As in Case B, in calculating the Index

Read/Write Cost, update mode must be used for function IA.

• function Update(R,t,order,Ntuples-updated): Update Cost-cost for updating Ntuples-

updated tuples of relation R according to the order specified in parameter "order".

A. If the clustering column is updated

Update = Dclcte(R,t,order,Ntuples-updated) + Insert(R,t,Ntuples-updatcd)

B. If the clustering column is not updated

Update = Data Write Cost + Index Read/Write Cost

B.l. Updates are performed in physical order.

(Data Write Cost)

a. If no restriction column is clustering

Data Write Cost = b(mR,pR,Ntuples-updated)

b. If a restriction column is clustering

- 134-

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

b.l. when F XmD>l

Data Write Cost = b(FccXmR,pR,Ntuples-updated)

b.2.whenF XmD<l
CC K

Data Write Cost = F^XbG/F^.F^Xn^Ntuples-updated/F^

(Index Read/Write Cost)

Index Read/Write Cost = Ntuples-updatedX2X

{2 [IA(C,R,updatemode)+l]
CC{all updated columns having indexes}

B.2. Updates are performed in ordering column order

(Data Write Cost)

Data Write Cost = Ntuples-updated

(Index Read/Write Cost)

a. If the ordering column does not have an index or is not updated

Index Read/Write Cost = Ntuples-updatedX2X

{2 [IA(C,R,updatemode)+l]
C€{all updated columns having indexes}

b. If the ordering column has an index and is updated

Index Read/Write Cost = Ntuples-updatedX2X

{E [IA(C,R,updatemode)+l]
C€{all updated columns having indexes except for the ordering column}

+ b^imorder col'Lorder c^Ntuples-updated)

+ Ntuplcs-updatcdX[IA(ordcring column,R,updatc mode)+1]

First, let us consider the case in which the clustering column is updated (Case A). In this case an

update operation can be considered as a deletion followed by an insertion. Deletion is performed

according to die order specified for update, but insertion follows a random order since the column is

- 135

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

updated to arbitrary values specified in the transaction. Although it is conceivable that the order

could be preserved after the update (e.g., new value = old value + 10), we ignore this case since

detecting this property requires understanding of the semantics of the transaction which is difficult

to achieve at the optimizer level.

Next, we consider the case in which the clustering column is not updated. The update cost

consists of the Data Write Cost and the Index Read/Write Cost. The Data Write Cost is identical to

that of the deletion cost. The Index Read/Write Cost consists of two parts: cost of deleting index

entries for old values and the cost of inserting index entries for new values. In general, locating the

index entry for the old value requires accessing the index from the root in update mode; finding the

location where the new value is to be placed also requires accessing the index in update mode since

index entries having the same key values are ordered according to their TIDs. Thus, we have a

factor of 2. Writing the modified index block causes one block access. Index accessing cost for an

ordering column needs special attention. Since tuples are accessed in ordering column order, the

index must have already been read, and the "b" function should be used for the cost of writing the

modified index blocks. The cost of inserting index entries for new values are identical to those of

other indexes.

One problem is worth note when updates are performed in the following situations:

• The clustering column is updated while tuples are located by a relation scan.

• The clustering column is updated vs hile tuples are located in clustering column order.

• The ordering column is updated while tuples are located in ordering column order.

In these situations the problem is that an updated tuple can be encountered more than once since

the position of the tuple (or index entry) moves after its update [SCH 81] [STO 76]. Two solutions

are suggested to avoid this anomaly. One adopted in [STO 76] is the deferred update. Here, updated

tuples (or index entries) are stored in a temporary file and merged to the main file (or index) after

update has been completed. Another strategy suggested in [SCH 81] is to avoid the above three

-136-

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

situations by choosing an alternative access path in processing transactions. Although we included

cost formulas for all cases for simplicity, if desired, the exceptional cases can always be avoided and

the corresponding cost formulas ignored.

E.6 Cost Formulas for Processing Transactions

The costs for processing transactions are derived using the elementary cost formulas defined in

Section E.5. Transactions are classified into the following eight types:

SQ: Single-relation (one-variable) queries

SD: Single-relation deletion transactions.

SU: Single-relation update transactions.

INS: Insertion transactions (single-relation transactions only).

AQ: Single-relation queries having aggregate operators in their SELECT
clauses, or GROUP BY constructs [CHA 76] or both.

JQ: Two-relation (two-variable) queries having join predicates (i.e., two-
relation joins)

JU: Update transactions having join predicates.

JD: ' Deletion transactions having join predicates.

We introduce below the cost formulas for each type of transaction. For transactions containing

join predicates, costs arc calculated for all combinations of partial-join algorithms. The combination

is specified in the parenthesis: the first entry represents the partial-join algorithm for Rp and the

second for R-. The join direction is also specified, when relevant, by an arrow from the starting

relation to the other relation. The factor "frcq" stands for the relative frequency of occurrence of a

transaction.

1.SQ

Cost = freq * Single-Query(R,tjoin column not included)

2.SD

- 137-

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

Cost = freq * [Single-Query(R,tjoin column not included)+

Delete(R,t,TID orderjrestricted set|)]

3. SU

Cost = freq * [Single-Query(R,tjoin column not included)+

Update(R,t,TID orderjrestricted set|)]

4. INS

Cost = freq * Insert(R,t,random order, number of tuples inserted)

5.AQ

(Sort-Merge Method, -)

Cost = freq * Sort-Merge(R.t)

(Join Index Method, —)

Cost = freq * Join-Index(R.t)

6.JQ

(Sort-Merge Method, Sort-Merge Method)

Costl = freq * [Sort-Merge(R1,t) + Sort-Merge(R2,t)]

(Sort-Merge Method, Join Index Method)

Cost2 = freq * [Sort-Merge(R1,t) + Join-Index(R2,t,Cf12)]

(Join Index Method, Sort-Merge Method)

Cost3 = freq * [Join-Index(R1,t,Cf21) + Sort-Merge(R2,t)]

(Join Index Method, Join Index Method)

a. Rx —► R2 (tuples in Rx are accessed first)

Cost4 = freq*[Join-Indcx(Rrt,PCf12)+Join-Index(R2,t,Cf12)]

b. R2 —► Rj (tuples in R2 are accessed first)

Cost5 = freq*[Join-Index(R1,t,Cf21)+Join-Index(R2,t,PCf12)]

(Inner/Outer-Loop Join Method, Inner/Outer-Loop Join Method)

a.Rl->R2

- 138-

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

Cost6 = freq*[Innef/Outer(R1,t,From)+Inner/Outer(R2,t,To)]

b-R2^
Rl

Cost7 = freq*[Inner/Outer(R1,t,To)+Inner/Outer(R2,t>From)]

7.JU
(Sort-Merge Method, Sort-Merge Method) Not allowed

(Sort-Merge Method, Join Index Method) Not allowed

(Join Index Method, Sort-Merge Method)

Costl = freq * [Join-Index(Rrt,Cf21) + Sort-Merge(R2,t)+

Update(R1,t,ordering column=join column, |result set of RJ)]

(Join Index Method, Join Index Method)

a.R^R2

Cost2 = freq * [Join-Index(R1,t,PCf21) + Join-Index(R2,t,Cf12)+

Update(R1,t,ordcring column = join columnjresult set of RJ)]

bR2-Ri
Cost3 = freq * [Join-Index(Rrt,Cf21) + Join-Index(R2,t,PCf12)+

Update(R1,t,ordering column=join column,|result set of RJ)]

(Inncr/Outer-Loop Join Method, Inner/Outer-Loop Join Method)

a. Rx ->R2

Cost4 = freq * [Inner/Outer(Rrt,From) + Inner/Outer(R2,t,To)

Update(Rrt,TID order, |result set of R^)]

b. R2 -► Rx Not allowed

8.JD

The cost formulas are identical to those of type JU transactions except that function
Delete replaces function Update.

Cost formulas for type SQ, SD, SU, and INS transactions are directly derived from the definitions

of elementary cost formulas.

139

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

A type AQ transaction is essentially a partial-join between the GROUP BY column and the

relation itself as far as the I/O access cost is concerned. Thus, if the sort-merge method(partial) is

used, the relation is sorted according to the join column order so that tuples in the same group are

clustered together. The sorted temporary relation is subsequently scanned to process the

transaction. The join index method(partial) can also be used since, by scanning the join index,

tuples in the same group can be retrieved consecutively. The inner/outer-loop join method(partial)

is not applicable in processing a type AQ transaction.

The cost of a type JQ transaction is composed of two partial-join costs: one for relation R,, the

other for relation R2. Except for the cases in which the sort-merge method(partial) is included the

cost differs depending on the direction of the join, i.e., depending on which relation's tuples are to

be accessed first. Specifically, if the join index method(partial) is used for both relations, the partial

coupling factor must be used for the relation to be accessed first; the coupling factor for the other.

Also, if the inner/outer-loop join method is used, the direction must be specified explicitly as a

parameter in function Inner/Outer.

The cost of a type JU or JD transaction also consists of two partial-join costs and, in addition,

update or deletion cost. Most of the join methods described in Section E.3 can be applied to a type

JU or JD transaction as well, with some exceptions: the sort-merge method(partial) cannot be used

for the relation to be updated (Rj); the inner/outer-loop join method is not allowed when the join is

directed towards relation Rr

E.7 Summary and Conclusion

A comprehensive set of formulas for estimating transaction-processing costs in relational database

systems has been developed. First, terminology has been defined in Section E.4 to provide a

mechanism for understanding interaction among relations in multiple-file environment. Next, a set

of elementary cost formulas has been developed for elementary access operations. In doing that,

- 140

APPENDIX E. TRANSACTION-PROCESSING COSTS IN RELATIONAL DATABASES

four types of ordcrings have been defined to characterize the order of accessing tuples. Finally,

transactions have been classified into eight types, and the cost formulas for each type have been

derived as composites of elementary cost formulas.

The cost formulas have been fully implemented in the Physical Database Design Optimizer

(PhyDDO)-an experimental system for developing various heuristics for the multiple-file physical

database design described in Appendix section K. The system accepts the eight types of transactions

described in Section E.6 and produces the optimal configuration of the physical database.

The formulas developed in this chapter use a higher level abstraction compared with other cost

models that incorporate more details of the storage structure [WIE 83] [SEN 69]. In particular, the

cost model we used in this chapter uniformly account for the number of block accesses without

differentiating sequential block accesses and random block accesses. This assumption is valid in

DBMS's that do not explicitly exploit sequential storage allocation.

Our model also uses a very simple assumption on the buffer strategy. (It has been assumed that a

new block access is needed unless two data elements consecutively accessed reside in the same

block.) Although the validity of this assumption has not been validated with actual databases in this

paper, wc believe that it will be sufficient for most practical cases. Experiments based on simulation

using the PhyDDO further supports that claim.

The main contribution of this paper is to present a coherent and complete set of cost formulas for

various types of transactions including queries, update, deletion, and insertion transactions. We

believe that the techniques employed in this paper will provide a useful tool for future research on

developing cost formulas for various database systems.

- 141

APPENDIX F. INDEX SELECTION IN RELATIONAL DATABASES

Appendix F. Index Selection in Relational
Databases

This paper has been submitted for publication. For convenience all references have

been moved to the end of the thesis.

-142-

APPENDIX F. INDEX SELECTION IN RELATIONAL DATABASES

Index Selection in Relational Databases

by

Kyu-Young Whang
Computer Systems Laboratory

Stanford University
Stanford, California 94305

Abstract

An index selection algorithm for relational databases is presented. The problem
concerns finding an optimal set of indexes that minimizes the average transaction-
processing cost. This cost is measured in terms of the number of I/O accesses. The
algorithm presented employes a heuristic approach called DROP heuristic. In an
extensive test performed to determine the optimality of the algorithm, the algorithm
found optimal solutions in all cases. The time complexity of the algorithm shows a
substantial improvement when compared with the approach of exhaustively searching
through all possible alternatives. This algorithm is further extended to incorporate the
clustering property (the relation is stored in a sorted order) and also is extended for
application to multiple-file databases.

F.1 Introduction

We consider the problem of selecting a set of indexes that minimizes the transaction-processing

cost in relational databases. The cost of a transaction is measured in terms of the number of I/O

accesses.

The index selection problem has been studied extensively by many researchers. A pioneering

work based on a simple cost model appeared in[LUM 71]. A more detailed cost model

incorporating index storage cost as well as retrieval and index maintenance cost was developed in

[AND 77]. Some approaches [KIN 74], [STO 74] attempted to formalize the problem to obtain

analytic results in some restricted cases. In a more theoretical approach Comer [COM 78] proved

that a simplified version of the index selection problem is NP-complete. Thus, the best known

5This work was supported by the Defense Advanced Research Project Agency under the KBMS Project, Contract
N39-82-C-0250.

Author's current address: Computer Systems Liboratory ERL 416, Stanford University, Stanford, California 94305

- 143-

APPENDIX F. INDEX SELECTION IN RELATIONAL DATABASES

algorithm to find an optimal solution would have an exponential time complexity. In an effort to

find a more efficient algorithm, Schkolnick [SCH 75] discovered that, if the cost function satisfies a

property called regularity, the complexity of the optimal index selection algorithm can be reduced to

less than exponential. Hammer and Chan [HAM 76] took a somewhat different approach and

developed a heuristic algorithm that drastically reduced the time complexity. However, the

optimality of this algorithm has not been investigated.

Although there has been considerable efforts on developing algorithms for index selection, most

past research has concentrated on single-file cases. Furthermore, incorporation of the primary

structure (the clustering property) of the file has remained to be solved. The purpose of this paper is

to develop an index selection algorithm with a reasonable efficiency that can be extended to

multiple-file environments as well as extended to incorporate the clustering property.

The approach presented in this paper bears some resemblance to the one introduced by Hammer

and Chan [HAM 76]. But, there is one major modification: the DROP heuristic [FEL 66] is

employed instead of the ADD heuristic [KUE 63]. The DROP heuristic attempts to obtain an

optimal solution by incrementally dropping indexes starting from a full index set. On the other

hand, the ADD heuristic adds indexes incrementally starting from an initial configuration without

any index to reach an optimal solution.

Since we are pursuing a heuristic approach for index selection, the actual result is suboptimal.

However, in an extensive test performed for validation, the algorithm found optimal solutions in all

cases. (On the other hand, the ADD heuristic found nonoptimal solutions in several occasions.)

We present first the index selection algorithm for single-file databases without the clustering

property. This algorithm is tested for its validation with 24 randomly generated input situations, and

the result compared with the optimal solutions generated by exhaustively searching through all

possible index sets. This algorithm is then extended to incorporate the clustering property.

- 144-

APPENDIX F. INDEX SELECTION IN RELATIONAL DATABASES

Extension to multiple-file cases is subsequently considered. Section F.2 introduces major

assumptions, while Section F.3 describes classes of transactions we consider and their cost functions.

The index selection algorithm and its time complexity are presented in Section F.4. Discussed in

Section F.5 is the result of the test performed for validation of the algorithm. The algorithm is

extended to incorporate the clustering property in Section F.6 . Finally, discussed in Section F.7 is

an extension of the algorithm for application to multiple-file databases.

F.2 Assumptions

We assume that the relation is stored in a secondary storage medium, which is divided into

fixed-size units called blocks [WIE 83]. In processing a transaction the number of I/O accesses

necessary to bring the blocks into the main memory depends on the specific buffer strategy. We

assume, however, the following simple strategy: no block access will be necessary if the next tuple

(or index entry) to be accessed resides in the same block as that of the current tuple (or index entry);

otherwise, a new block access is necessary. We also assume that all TID (tuple identifier)

manipulations can be performed in the main memory without any need for I/O accesses.

We consider only conjunctive predicates consisting of simple equality predicates (e.g., A = 'a').

The sclectivities of each simple predicate is estimated as the inverse of the corresponding column

cardinality. If a predicate is a conjunction of simple predicates, its selectivity is obtained by

multiplying the selectivities of those simple predicates. More general predicates can be incorporated

if a more elaborate scheme for estimating the selectivities [DEM 80] is employed.

We assume that a B+-tree index [COM 79] can be defined for a column of a relation. The

leaf-level of the index consists of (key, TID) pairs for every tuple in that relation and the leaf-level

blocks are chained so that the index can be scanned without traversing the index tree. Entries

having the same key value are ordered by TID. When index entries are inserted or deleted, we

assume that splits or concatenations of index blocks are rather infrequent so that modifications are

145-

APPENDIX F. INDEX SELECTION IN RELATIONAL DATABASES

mainly done on leaf-level blocks. Let us note that this model of storage structure is not essential for

the validity of the algorithm to be presented, but is necessary for implementation.

F.3 Transaction Model

We consider four types of transactions: query, update, deletion, and insertion transactions. The

classes of transactions for those types are shown in Figures F-l to F-4.

SELECT <list of columns>
FROM R
WHERE P

Figure F-l: General Class of Queries Considered.

UPDATE R
SET R.A = <new value.>,
SET R.B = <new valueß>,

WHERE P

Figure F-2: General Class of Update Transactions Considered.

DELETE R
WHERE P

Figure F-3: General Class of Deletion Transactions Considered.

INSERT INTO R: <list of column values>

Figure F-4: General Class of Insertion Transactions Considered.

In Figures F-l to F-4 "P" stands for the restriction predicate that selects the relevant tuples. We

call the columns appearing in P restriction columns.

- 146-

APPENDIX F. INDEX SELECTION IN RELATIONAL DATABASES

Cost formulas for those transactions are now introduced in the form of functions. Each function

will be followed by subsequent explanation on how it has been derived. In calculating the cost of a

query we do not include the cost of writing the result since that cost is independent of the index set

and, accordingly, irrelevant for optimization purposes. We also assume that, in resolving predicates,

all the available indexes are utilized even if some index might increase the processing cost due to the

access cost of the index itself.

We define the following notation:

C : A column.

n : Number of tuples in the relation (cardinality).

p : Blocking factor of the relation.

L : Blocking factor of the index for column C.

F : Selectivity of column C or of its index

m : Number of blocks in the relation, which is equal to n/p.

t : A transaction.

restricted set : Set of tuples that satisfy all the restriction predicates.

Equivalent to (II FC)X n.
C€{all restriction columns}

partially restricted set : Set of tuples that satisfy the restriction predicates that can

be resolved through indexes.

Equivalent to (11 Fc)Xn.
C€{all restriction columns having indexes}

• function b(m,p,k): cost for accessing k randomly selected tuples in TID order.

b(m,p,k)=m[l- <?)/$] (R1>
= m[l - ((n-p)!(n-k)!)/((n-p-k)!n!)]

= m[l - nk
=1(n-p-i + l)/(n-i+l)]

when k<n-p, and

b(m,p,k)=m whenk>n-p.

The function is approximately linear on k when k«n and approaches p as k becomes large.

Equation (F.l) is an exact formula derived by Yao [YAO-b 77]. Variations of this function and

approximation formulas for faster evaluation are summarized in [WHA-a 82].

- 147-

APPENDIX F. INDEX SELECTION IN RELATIONAL DATABASES

function IA(C,modc): cost for accessing a B+-tree index from the root.

A. mode = Query mode (F.2)

IA = flogL nl + rFcXn/Lcl

B. mode = Insertion mode

IA = [log, n] + 1

C. mode = Update mode

IA = riogL nl + [0.5XFcXn/Lcl

The function IA has three modes depending on the purpose of accessing the index. In query

mode all the index entries having the same key value are retrieved. The first term in Equation

(F.2) is the height of the index tree, and the second the number of leaf-level index blocks accessed.

In insertion mode an index entry corresponding to the inserted tuple is placed after the last entry

having the same key value; thus, only one leaf-level block will be accessed. In update mode the

index entries containing the old value have to be searched to find the one having the TID of the

updated tuple; thus, on the average, about half of the index entries will be searched.

• function Qucry(t): cost for processing a query

Query = b(m,p,|partially restricted set|) + 21 IA(C,query mode) (F.3)
C€{all restriction columns having indexes}

Queries are processed as follows. Indexes of all restriction columns are accessed in query mode to

obtain the sets of TIDs satisfying the corresponding simple restriction predicates. The intersection

of these TID sets is formed subsequently to locate tuples in partially restricted set These tuples are

retrieved and produced as output after the remaining restriction predicates are resolved. The first

term in Equation (F.3) represents the cost of accessing data tuples; the second the cost of accessing

indexes.

• function Update(t): cost for processing an update transaction.

Update = Query(t) (F.4)

148-

APPENDIX F. INDEX SELECTION IN RELATIONAL DATABASES

+ b(m,p,|rcstricted set|)

+ Irestricted set|X2x2 [IA(C,update mode)+l]
c€{all updated columns having indexes}

The update cost consists of three parts: the first term of Equation (F.4) represents the cost of

reading in blocks containing the tuples to be deleted; the second term the cost of writing out

modified blocks; and the third term the cost of updating corresponding indexes. The third term is

again divided into two parts: the cost of deleting index entries for old values and that of inserting

index entries for new values. Since these two parts have the same value, a factor of 2 is introduced.

Let us note that, even for insertion of new index entries, update mode is specified for function IA

since index entries having the same key value must be ordered according to their TIDs.

• function Delete(t): cost for processing a deletion transaction.

Delete = Query(t)

+ b(m,p,[restricted set|)

+ Irestricted set|X 2 [IA(C, update mode)+1]
CG{all columns having indexes}

The deletion cost is the same as the update cost except that the third term of the cost function

represents the cost of deleting index entries for all existing indexes.

• function Insert(t,NtupIes-inserted): cost for processing an insertion transaction.

Insert = Ntuples-inserted

X (1 + 1 + 2 [IA(C,insertion mode) + 1])
c€{all columns having indexes}

Three parts contribute to the insertion cost: the cost of locating the place to insert a new tuple

(one I/O access); the cost of writing the modified block (one I/O access); and the cost of modifying

all existing indexes accordingly. In the third part function IA is called in insertion mode since the

new index entry is always added at the end of the list of index entries having the same key value.

- 149

APPENDIX F. INDEX SELECTION IN RELATIONAL DATABASES

F.4 Index Selection Algorithm (DROP heuristic)

Input:

• Usage information: A set of various query, update, insertion, and deletion transactions
with their relative frequencies.

• Data characteristics: Relation cardinality, blocking factor, selectivities and index
blocking factors of all columns.

Output:

• The optimal (or suboptimal) index set

Algorithm 1:

1. Start with a full index set

2. Try to drop one index at a time and, applying the cost evaluator, obtain the total
transaction-processing cost to find the index that yields the maximum cost benefit when
dropped.

3. Drop that index.

4. Repeat Steps 2 and 3 until there is no further reduction in the cost.

5. Try to drop two indexes at a time and, applying the cost evaluator, obtain the total
transaction-processing cost to find the index pair that yields the maximum cost benefit
when dropped.

6. Drop that pair.

7. Repeat Steps 5 and 6 until there is no further reduction in the cost.

8. Repeat Steps 5, 6, and 7 with three indexes, four indexes, ..., up to k (k must be
predefined) indexes at a time.

The variable k, the maximum number of indexes that arc dropped together at a time, must be

supplied to the algorithm by the user. We believe, however, that k=2 suffices in most practical

cases. In fact, in all the tests performed to validate the index selection algorithms, the maximum

value of k actually used was 2.

150

APPENDIX F. INDEX SELECTION IN RELATIONAL DATABASES

The time complexity of the algorithm is 0(gXvk+1), where g is the number of transactions

specified in the usage information, v the number of columns in the relation, and k the maximum

number of columns considered together in the algorithm. The time complexity is estimated in terms

of the number of calls to the cost evaluator which is the costliest operation in the design process. In

the algorithm the cost evaluator is called for every k-combination of columns of the relation, and for

every transaction in the usage information. This contributes the order of gXvk. The procedure is

repeated until there is no further reduction in the cost. Since the number of repetitions is

proportional to v, the overall time complexity is 0(gXv +).

F.5 Validation of the Algorithm

An important task in developing heuristic algorithms is their validation. In this section the result

of an extensive test performed to validate the index selection algorithm (DROP heuristic) will be

presented. In particular, we try to measure the deviations of the heuristic solutions from the optimal

ones for various input situations generated using different parameters. (These parameters were

chosen from practically important ranges.) For a relation having many columns identifying the

optimal solution itself is a difficult, often impossible, task. Therefore, in the tests, the number of

columns in a relation is restricted to be ten. Optimal solutions are then obtained by exhaustively

searching through all possible alternatives (210 combinations).

The input situations are generated as follows:

1. Two sets of the relation cardinality and column cardinalities are used: in Set 1 the
relation cardinality is 1000; in Set 2 it is 100,000. The column cardinalities are randomly
generated between 1 and the relation cardinality with a logarithmically uniform
distribution.

2. Two sets of the blocking factor and index blocking factors are used: 1) 10 and 100; 2)
100 and 1000. The index blocking factors are assumed to be identical for all indexes.

3. The usage information includes 30 transactions and their relative frequencies. Among
them there arc 21 queries, 4 to 5 update transactions, 3 to 4 deletion transactions, and 1
insertion transaction. Three sets of transactions are used. For each set, transactions are
randomly generated as follows: for queries and deletion transactions 1 to 3 (numbers are

151-

APPENDIX F. INDEX SELECTION IN RELATIONAL DATABASES

randomly selected) columns are randomly selected as restriction columns; for update
transactions 1 to 3 columns are randomly selected as updated columns and as restriction
columns.

4. Two sets of relative frequencies are used. In Set 1 all transactions initially have identical
frequencies. Later, the frequencies of deletion and insertion transactions are multiplied
by an adjusting factor so as to keep the number of indexes in the result between 3 and 7.
This adjustment is made to avoid extreme cases in which a full index set or an empty
index set is the optimal solution. For Set 2 the relative frequencies of transactions are
randomly generated between 100 and 500 with an interval of 50 between adjacent values.

The scheme described above generates 24 different input situations, one of which is shown in

Figure F-5. The test results for both Drop and Add heuristics are summarized in Table 1. In the

first column of Table 1 the first digit of the input situation number represents the set of the

relational cardinality, the second the set of the blocking factor and index blocking factors, the third

the set of transactions, and the last the set of relative frequencies of transactions. The second column

of the table shows the number of indexes present in the optimal solution. The CPU time shows the

performance of the algorithms when run in a DEC-2060. The situations in which any deviation

occurred are given percent deviations. Marked by "opt" are the situations in which an optimal

solution was found.

Ilnput Situation 2132!
Schema

Relations
Relation R

Relcard 100000
Nblocks 10000
Blkfac 10

Column Cl
Colcard 409
Niblk 1000
Iblkfac 100

Column C2
Colcard 1333
Niblk 1000
Iblkfac 100

Column C3
Colcard 180
Niblk 1000
Iblkfac 100

Column C4
Colcard 1
Niblk 1000
Iblkfac 100

Column C5
Colcard 1108
Niblk 1000
Iblkfac 100

Column C6

152-

APPENDIX F. INDEX SELECTION IN RELATIONAL DATABASES

Co1 card 678
Nlblk 1000
Iblkfac 100

Column C7
Colcard 175
Niblk 1000
Iblkfac 100

Column C8
Colcard 64
Niblk 1000
Iblkfac 100

Column C9
Colcard 194
Niblk 1000
Iblkfac 100

Column CIO
Colcard 328
Niblk 1000
Iblkfac 100

Usage
Transaction 1

Type SQ FREQ 500
Select R.C1
From R
Where R.C7 ="a" AND

R.C10="b"

Transaction 2
Type SQ FREQ 100
Select R.C1
From R
Where R.C6 ="a" AND

R.C8 ="b" AND
R.C9 >"c"

Transaction 3
Type SQ FREQ 200
Select R.C1
From R
Where R.C3 = "a" AND

R.C4 ="b" AND
R.C9 ="c"

Transaction 4
Type SQ FREQ 100
Select R.C1
From R
Where R.C6 ="a"

Transaction 5
Type
Select

SQ FREQ 250
R.C1

From R
Where R.C8 = "a" AND

R.C2 = "b"

Transaction 6
Type SQ FREQ 50
Select R.C1
From R
Where R.C5 = "a" AND

R.C9 = "b"

Transaction 7
Type SQ FREQ 450
Select R.C1
From R
Where R.C7 = "a" AND

R.C10 = "b"

Transaction 8
Type
Select

SQ FREQ 100
R.C1

From R
Where R.C8 = "a"

Transaction 9
Type SQ FREQ 250
Select R.C1
From R
Where R.C3 = "a" AND

R.C2 = "b"

Transaction 10
Type
Select

SQ FREQ 450
R.C1

From R
Where R.C7 = "a" AND

153-

APPENDIX F. INDEX SELECTION IN RELATIONAL DATABASES

R.C3 = "b"

Transaction 11
Type SQ FREQ
Select R.C1
Fron R
Where R.C4 = "a"

R.C7 = "b"

Transaction 12
Type SQ FREQ
Select R.C1
Fron R
Where R.C10 = "a"

Transaction 13
Type SQ FREQ
Select R.C1
Fron R
Where R.C8 = "a"

R.C6 = "b"

Transaction 14
Type SQ FREQ
Select R.C1
From R
Where R.C5 = "a"

R.C2 = "b"

Transaction 15
Type SQ FREQ
Select R.C1
Fron R
Where R.C4 = "a"

500

AND

250

150

AND

250

AND

100

Transaction 16
Type SQ FREQ 150
Select R.C1
From R
Where R.C4 ="a" AND

R.C3 = "b"

Transaction 17
Type SQ FREQ 350
Select R.C1
From R
Where R.C1 = "a" AND

R.C4 = "b" AND
R.C3 = " c "

Transaction 18
Type SQ FREQ 150
Select R.C1
Fron R
Where R.C3 = "a" AND

R.C9 = "b"

Transaction 19
Type
Select

SQ FREQ 150
R.C1

Fron R
Where R.C5 = " a "

Transaction 20
Type SQ FREQ 300
Select R.C1
From R
Where R.C8 = "a"

Transaction 21
Type SQ FREQ 400
Select R.C1
From R
Where R.C4 =" a " AND

R.C5 = "b"

Transaction 22
Type SU FREQ 200
Update R
Set R.C10 = "a"
Where R.C9 = "f»

Transaction 23
Type SU FREQ 300
Update R
Set R.C1 = "a",
Set R.C10 = "b",
Set R.C8 = " c "
Where R.C4 = "d"

Transaction 24
Type SU FREQ 300
Update R

-154

APPENDIX F. INI 3EXS

Set
Set
Where

R.C3
R.C6
R.C8
R.C5

'•"a",
."b"
«"c"
."d"

AND

Transaction
Type
Update
Set
Where

25
SU
R
R.C2
R.C3

FREQ

.-a"
•"e"

260

Transaction

Delete
Where

26
SD
R
R.C8
R.C6

FREQ

=-d"
="e"

SO

AND

Transaction
Type
Delete
Where

27
SD
R
R.C1
R.C8
R.C7

FREQ

• "d"
>"e"

150

AND
AND

Transaction
Type
Delete
Where

28
SD
R
R.C6
R.C5

FREQ

>"c"

250

AND

Transaction
Type
Delete
Where

29
SD
R
R.C7
R.C4

FREQ

.»f-
-"g"

200

AND

INDEX SELECTION IN RELATIONAL DATABASES

Transaction 30
Type INS FREQ 150
Insert INTO R:

<"al","a2","a3"."a4","a5"."a6"."a7","a8","a9","al0">

Figure F-5: An Example Input Situation.

In all situations tested the DROP heuristic found optimal solutions. Although the test is by no

means exhaustive, the result is a good indication that the DROP heuristic will perform well in many

practical situations. In comparison, the ADD heuristic produced nonoptimal solutions in six cases;

the maximum deviation encountered was 21.17%. One possible reason why the ADD heuristic does

not perform well is the following. In the ADD heuristic, when the first index is added, the cost

changes drastically causing an abrupt change in the design process. But, in the DROP heuristic,

dropping indexes causes a smooth transition in the design process since dropping one index does not

make a big change in the cost due to the presence of other indexes compensating for one another.

As we can see in Table 1, an exhaustive search takes excessive computation time; in comparison,

the DROP heuristic is far more efficient without significant loss of accuracy. Obviously, for larger

input situations, the exhaustive-search method will become intolerably time-consuming. In these

cases, heuristic algorithms such as the DROP heuristic may be the only ones applicable.

155-

APPENDIX F. INDEX SELECTION IN REIJMIONAL DATABASES

Table 1. Accuracy and Performance of the Index Selection Algorithm.

|Input |Number of | CPU timefsecond s) / Devi ation(%)
|Situation Indexes

Algorithm 1 | ADD Heuristic Ex. Searchj

1111	7	2.3 1 opt	2.0	0.21 1 36
1112 1 6	2.2	opt 1 2.1 opt 1 36		
1121 ! 6 2.4 opt	2.0	1.23 1 37		
j 1122 1 6 2.3 opt 1 2.1	1.17 1 37			
1131 6	2.5 opt 1 2.1 opt 1 39			
j 1132 | 7 2.5 opt 2.1 1.17 1 39 |

| 1211 5 3.1 opt 1.7 opt 32 |
j 1212 3 1.9 opt 1.6 opt 31 |
| 1221 4 2.1 opt 1.7 opt 32 |
| 1222 5 2.0 opt 1.7 opt 32 |
| 1231 4 2.3 opt 1.7 opt 35 |
| 1232 5 2.2 opt 1.7 opt 35 |

| 2111 4 2.4 opt 2.1 16.71 39 |
| 2112 5 2.5 opt 2.1 21.17 40 |
| 2121 6 2.3 opt 2.0 opt 38 |
| 2122 7 2.5 opt 2.0 opt 37 |
| 2131 6 2.6 opt 2.2 opt 40 |
| 2132 6 2.7 opt 2.2 opt 40 |

| 2211 6 2.6 opt 2.0 opt 36 |
j 2212 4 2.4 opt 1.9 opt 36 |
| 2221 6 I 2.4 opt 1.9 opt 34 |
| 2222 6 I 2.3 opt 1.9 opt 34 |
| 2231 5 I 2.4 | opt 2.0 opt 38 |
| 2232 | 5 | 2.4 | opt 2.0 | opt 38 |

F.6 Index Selection when the Clustering Column Exists

Incorporation of the clustering property to the index selection algorithm is straightforward. Two

algorithms for this extension are presented below:

Algorithm 2:

1. For each possible clustering column in the relation perform index selection.

2. Save the best configuration.

Algorithm 3:

156

APPENDIX F. INDEX SELECTION IN RELATIONAL DATABASES

1. Perform index selection with the clustering column determined in Step 2 of the last
iteration. (During the first iteration it is assumed that there is no clustering column.)

2. Perform clustering design with the index set determined in Step 1. The clustering
property is assigned to each column in turn, and the best clustering column is selected.

3. Steps 1 and 2 are iterated until the improvement in the cost through the loop is less than
a predefined value (e.g., 1%).

Algorithm 2 is a pseudo enumeration since index selection is repeated for every possible

clustering column position. Naturally, Algorithm 2 has a higher time complexity compared with

Algorithm 3, but has a better chance of finding an optimal solution. Both algorithms have been

implemented and tested as a part of Physical Database Design Optimizer (PhyDDO)-an

experimental system for developing various heuristics for the multiple-file physical database design

K. In most cases tested they found optimal solutions. Let us note that the cost formula have to be

modified in the presence of the clustering column. A complete set of cost formulas for multiple-file

relational databases with the clustering property can be found in Appendix E.

F.7 Index Selection for Multiple-File Databases

Extension of the index selection algorithm for application to multiple-file databases is also

straightforward. The extended algorithm (let us call it Algorithm 4) is almost identical to Algorithm

1 except for the followings:

1. The entire database is designed at the same time. It is done by treating all columns in the
database uniformly as if they were in a single relation.

2. When evaluating transactions involving more than one relation, the optimizer [SEL 79],
[STO 76] has to be invoked to find the optimal sequence of access operations.

Algorithm 4 has also been implemented and successfully tested as a part of the Physical Database

Design Optimizer.

157-

APPENDIX F. INDEX SELECTION IN RELATIONAL DATABASES

F.8 Summary and Conclusion

Algorithms for the optimal index selection in relational databases have been presented.

Algorithm 1, which employs the DROP heuristic, has been introduced for single-file databases and

compared with the ADD heuristic. In an extensive test performed for its validation, the DROP

heuristic found optimal solutions in all cases. In comparison, the ADD heuristic found nonoptimal

solutions in several occasions.

The index selection algorithm using the DROP heuristic has been extended to incorporate the

clustering property (Algorithms 2 and 3) and also has been extended for application to multiple-file

databases (Algorithm 4).

Although index selection has long been a subject of intensive research, no successfully validated

algorithm with good efficiency has been reported. We believe that our approach provides a useful

and reliable algorithm for practical applications.

- 158-

APPENDIX G. RELATIONSHIPS BETWEEN RELATIONS

Appendix G. Relationships between Relations

In this section, we demonstrate that the assumption that we made in Appendix A excluding

M-to-N relationships from consideration for optimization is reasonable.

Relations can have various relationships (not necessarily semantically meaningful ones)

depending on the characteristics of the domains of the attributes that are related. For example, if we

relate a key attribute (or set of attributes) in relation R1 and a nonkey attribute (or set of attributes)

in relation R,, then R, and R, have a 1-to-N relationship with respect to these attributes considered.

Relations R, and R, will have a 1-to-l relationship if attributes considered in both relations are key

attributes, and an M-to-N relationship if both are nonkey attributes.

In this section, we shall show that a relation scheme any of whose relation instance is a join of two

relations which has an M-to-N relationship with respect to a set of attributes A has a multivalued

dependency (MVD)[ULL 82]-assuming that the only predicate that relates these two relations is

the one that represents the join on A.

Intuitively, if a relation scheme R has an MVD A-»-»B (and accordingly A-»-»R-B), where A

and B are sets of attributes in R, then in a specific relation instance r of R, given a specific value of

A, the values of R-B are completely replicated for every distinct value of B. Because of this

replication, sets of attributes B and R-B tend not to have a meaningful relationship, and thus it

does not make much sense to have both 'sets of attributes together in a single relation.

We believe, in accordance with the above argument, that joining two relations that have M-to-N

relationships with respect to the set of attributes on which the join is performed is relatively

infrequent. In Appendix A, on the basis of this argument, we excluded from consideration as

prospects for optimization join operations on relations that bear an M-to-N relationship.

We have the following theorems:

159-

APPENDIX G. RELATIONSHIPS BETWEEN RELATIONS

Theorem G.l: If a relation scheme R has an MVD A-»-»B, where A and B are sets of attributes

of R, then every relation r for R is a natural join of projections of r on the relation schemes R: = A,

R2 = AUB, R3 = AU(R- B), respectively, where Rr R2, and R3 possess the relationships shown in

Figure G-l.

A

Rt I I

/ \
/ \

• *
AUB AU(R-B)

R2 I I I I R3

Figure G-l: Relation Schemes and Their Relationships.

In this figure — * represents a 1-to-N relationship with respect to A.

Proof: Rp R2, and R3 can be obtained by two consecutive lossless join decompositions, i.e.,

decomposition of R into AUB and AU(R-B) and decomposition of AUB into A and AUB. These

two decompositions are lossless, since we have an MVD A-»->B [ULL 82]. Thus, the overall join

decomposition of R into Rp R2, and R3 is also lossless. Therefore, for any relation r for R, r =

JOIN3=inR(r).

To prove that Rx and R2 has a 1-to-N relationship, we note that A in Rx is a key, since it is the

only attribute (or set of attributes) in Ry However, A in R2 is generally not a key. So we have a

1-to-N relationship from R1 to R2.

When A in R2 is a key, we have a 1-to-l relationship between R: and R2, which can be considered

as a special case of a 1-to-N relationship. Similarly, Rx and R3 have a 1-to-N relationship. Q.E.D.

Theorem G.2: A relation scheme R has MVDs A->->B and C->-»D if any relation r for R is a

- 160-

APPENDIX G. RELATIONSHIPS BETWEEN RELATIONS

natural join of some relations rp r2, and r3 for relation schemes Rp R2, and R3, respectively, where

R-, R2, and R3 have the relationships shown in Figure G-2.

AUC E

h I II
/ \

/ \
/ \

* *
AB CD

R, I I I I* I I R3 '2

Figure G-2: Relation Schemes and Their Relationships.

In that figure — * represents a 1-to-N relationship with respect to A on the left side and one

with respect to C on the right side.

Proof: Consider tuples t and s with t[A] = s[A] in a relation r for R. Since r is a natural join of

some relations rp r2, and r3, respectively, there must exist tuples ur u2 in r^, v1, v2 in r2; and wp w2

in r3 such that

t[A] = Ul[A] = vjA] and t[C] = u^C] = w^C]

s[A] = u2[A] = v2[A] ands[C] = u2[C] = w2[C].

Since t[A] = s[A], we have uJA] = u2[A]. But since R± and R2 have a 1-to-N relationship from

R, to R2, and they are connected through A, A must have unique values in rr Hence uL = u2 and

accordingly uJC] = u2[C] = w2[C].

Therefore r will contain a tuple z where

z[A] = vx[A] = t[A] = s[A]

z[B] = vJB] = t[B]

z[R-AUB] = w2[R-AUB] = s[R-AUB].

Thus R has an MVD A-»—»B. By a similar argument, R has C->->D. Q.E.D.

- 161-

APPENDIX G. RELATIONSHIPS BETWEEN RELATIONS

Corollary: Let relation schemes Rx and R2 have art M-to-N relationship with respect to a set of

attributes A. The relation scheme R whose relation instances are natural joins on A of two relations

rx for Rx and r2 for R2 has M VDs A-» -»(Rj - A) and A-* ->-(R2 - A).

Proof: We can consider a two-relation join of rx and r2 as a three-relation join of rr r2, and an

imaginary relation n^ U riAr2. Then the relation scheme R3 corresponding to this imaginary

relation has 1-to-N relationships with Rx and R2, with respect to A, as shown in Figure G-3.

A

/ \
/ \

/ \
* *

A Rj-A A R2-A

Rx I I III I R 2

Figure G-3: Relation R3 has 1-to-N Relationships with Rx and R2.

Thus relation scheme R has MVDs A-^-^-A) and A->-*(R2-B) from Theorem G.2.

Q.E.D.

- 162

APPENDIX H. EQUIVALENT RESTRICTION FREQUENCY OF A PARTIAL-JOIN

Appendix H. Equivalent Restriction
Frequency of a Partial-Join

In Appendix A, the equivalent restriction frequency of a partial-join using the join index method

was defined as the ratio of the gain in access cost by having the restriction indexes in a partial-join to

the gain in access cost that the same restriction indexes would yield in the joint restriction with the

join index. We shall show in this section that this equivalent restriction frequency of a partial join

using the join index method performed on relation R2 can be calculated, with one exceptional case,

as Cf.2/F , where Cf12 is the coupling factor from relation Rx to relation R2 and Fa is the selectivity

of the join columns of relation R2.

By formulating the partial-join cost and the cost of the joint restriction in both cases in which the

restriction index is used and in which the restriction index is not used (or does not exist), we shall

show that the number of block accesses saved in a partial-join is the same as the number of block

accesses saved in the joint restriction of the join index and the restriction index used in the partial-

join multiplied by Cf12/Fa.

We have three general cases: in Case 1 both the join index and the restriction index are

nonclustering; in Case-2 the join index is nonclustering, while the restriction index is clustering; in

case 3 the join index is clustering, while the restriction index is nonclustering.

Case 1: both the join index and the restriction index are nonclustering

a. When the restriction index is used

Joint restriction cost = b(m,p,FaXFjXn)

Partial-join cost = (Cf12/Fa) b(m,p,FaXFXn)

In a joint restriction, the number of records selected is FaXFXn. We assume that these records

are evenly spread and are accessed in TID order. Thus we get b(m,p,FaXF.Xn) block accesses. In a

-163-

\

APPENDIX H. EQUIVALENT RESTRICTION FREQUENCY OF A PARTIAL-JOIN

partial-join, we are following the join index in the order of join column value, and FaXFjXn records

are accessed for a distinct join column value. Since these records are spread over the entire file and

are accessed in TID order, we get b(m,p,F XFXn) block accesses. This procedure is repeated for

every distinct join column value selected by the coupling effect and the join selectivity (i.e.,

according to the coupling factor). The total number of distinct join column values are 1/Fa.

Therefore, as the partial-join cost, we have (Cf12/Fa) b(m,p,FaXFiXn).

b. When the restriction index is not used (or does not exist)

Joint restriction cost = b(m,p,F Xn)
a

Partial-join cost = (Cf12/Fa) b(m,p,FaXn)

An analysis applies that is the same as above except that the restriction index is not used. Thus,

we have F Xn selected records instead of F XFXn. a a l

Case 2: the join index is nonclustering while the restriction index is clustering

There are two cases to be considered separately: when F.Xm>l and when F.X < 1.

1. WhenF.Xm>l

a. When the restriction index is used

Joint restriction cost = b(FiXm, p, F^FjXn)

Partial-join cost = (Cf12/Fa) b(FXm, p, FaXFXn).

This case is almost identical to Case 1, except that the restriction index is clustering and the range

within which the selected records can be found is limited to F.Xm blocks instead of m (the number

of blocks of the entire file). To use b function it is required that F.Xm>l.

b. When the restriction index is not used (or does not exist)

Joint restriction cost = b(m,p,F Xn)
a

Partial-join cost = (Cf12/Fa)b(m,p,FaXn)

- 164-

APPENDIX H. EQUIVALENT RESTRICTION FREQUENCY OF A PARTIAL-JOIN

This case is exactly the same as Case 1-b.

2. WhenFjXnKl

a. When the restriction index is used

Joint restriction cost = FjX b(l/Fj, FjXn, FaXn)

Partial-join cost = (Cf12/Fa)XFXb(l/F,F.Xn,FaXn).

Since F.Xm < 1 and the restriction index is clustering, all records selected according to the

restriction index will be confined in an area smaller than 1 block (let us call this a selected area). Let

us assume that this selected area resides within a physical block (i.e., we ignore the case in which this

selected area resides on the border of two blocks). If we assume that the file is divided into logical

blocks of the same size as this selected area, the probability that this selected area will be hit by a

joint restriction is

(l/(l/F))b(l/F,FXn,FaXn).

This is also the probability that the physical block containing the selected area will be hit (note that

there are 1/F. logical blocks in the file). This is also the number of physical blocks to be hit by the

joint restriction, since the physical block containing the selected area is the only one that can

possibly be accessed.

In a partial-join, the same analysis is valid for each distinct join column value, assuming that the

same block must be fetched again if a repeated forward scan inside this block is to be performed.

Thus the partial-join cost is the product of (Cf^/F) and the joint restriction cost.

b. When the restriction index is not used

Joint restriction cost = b(m,p,FaXn)

Partial-join cost = (Cf12/Fa) b(m,p,FaXn)

This case is exactly the same as Case 1-b.

165-

APPENDIX H. EQUIVALENT RESTRICTION FREQUENCY OF A PARTIAL-JOIN

Case 3: the join index is clustering, while the restriction index is nonclustering

1. When F Xm>l a —

a. When the restriction index is used

Joint restriction cost = b(F Xm, p, FXFXn)

Partial-join cost = (Cf„/F) b(F Xm, p, F XF.Xn).

An analysis similar to Case 2-1-a applies, except that the range of the selected records is limited to

FXm blocks instead of F.Xm. a l

b. When the restriction index is not used

Joint restriction cost = F Xm a

Partial-join cost = (Cf12/Fa)XFaXm = Cf12Xm.

Since the join index is clustering, the number of blocks accessed is proportional to the number of

records selected.

2. WhenFaXm<l

a. When the restriction index is used

Joint restriction cost = (1/(1/FJ) b(l/F , F Xn, FXn)

Partial-join cost = b(m, 1/(F m), Cf,,Xb(l/F0> FXn, FXn)).
a A.Z. a 3. 1

The joint restriction cost can be obtained by a similar analysis used in Case 2-2-a, except that the

roles of F and Fj are interchanged.

In the partial-join, the entire file is divided into 1/F logical blocks, each of which contains F Xn

records. According to the restriction index, FjXn records are selected; the number of logical blocks

selected by this restriction is b(l/Fa, FaXn, FjXn).

The coupling factor Cf12 determines how many distinct join column values are actually selected.

- 166-

APPENDIX H. EQUIVALENT RESTRICTION FREQUENCY OF A PARTIAL-JOIN

Since one logical block corresponds to one distinct join column value, the number of logical blocks

selected according to the coupling factor and the selectivity of the restriction index is Cf^XbOVF^

FaXn,RXn).

To calculate the number of physical blocks hit, let us assume that the entire file consists of m

blocks, each of which contains l/(Fam) logical blocks. Since Cf^XbQ/F^ FaXn, FjXn) logical

blocks are selected, the number of physical blocks that will be hit is b(m, l/(Fam), Cf^XKl/F^

FaXn,FiXn».

b. When restriction index is not used (or does not exist)

Joint restriction cost = 1

Partial-join cost = b(m,l/(Fam),Cf12/Fa)

This can be easily derived from Case 3-2-b by setting Fj to 1.

We have seen, in all situations except Case 3-2, that the partial-join cost is equivalent to Cf12/Fa

times the joint restriction cost. Accordingly, the cost saved by having the restriction index in a

partial-join is Cf./F times the cost saved by having the restriction index in the joint restriction.

Case 3-2 is the only case in which the equivalent restriction frequency of a partial-join using the

join index method cannot be represented as Cf12/Fa. The reason is that, in a partial-join, the logical

blocks are accessed in a serial order, and thus several logical blocks may cause only one block access.

In the case of joint restriction, we need one block access in any case if at least one record is selected.

The derivations of the formulas were introduced to show how we can formulate cost formulas

with the b function, as well as to show that, in most cases, equivalent restriction frequency has a

simple form, Cf12/F .

While the detailed form of cost formulas depend on the specific cost models, we believe that the

same principle we used in the derivation can be easily applied to any given model.

-167-

APPENDIX I. COMPUTATIONAL ERRORS

Appendix I. Computational Errors

1.1 Comparison of Computational Errors

In this appendix we develop the prediction of the computational errors which occur in the

estimation of block accesses discussed in Appendix C. These computational errors occur due to the

limited precision of the computing system evaluating the formula.

For convenience, we reintroduce two equations from Appendix C. Equation (1.1) is the

approximation formula developed, and Equation (1.3) is the representation of Yao's exact formula

using the Gamma function.

bwl(m,p,k)/m = [1 - (1 - l/m)k] (1.1)

+ [l/m2p X k(k-l)/2 X (l-l/m)k_1]

+ [1.5/m3p4 X k(k-l)(2k-l)/6 X (l-l/m)^1]

when k<n-p, and

bwl(m,p,k)/m = 1 whenk>n-p (1.2)

b(m,p,k) = m[l-exp(LGAM(n-p + l)+LGAM(n-k + l) (1.3)

- LG AM(n-p-k +1) - LG AM(n +1))].

Theorem 1.1: Calculation of Eq. (1.3) to d digits of precision with a possible error of ±1 in the

least significant digit (LSD) requires at least log10(mn log(n)) + d valid digits in the computing

system with a possible error of ±1 in the LSD.

Proof: We shall use a pseudo equality symbol = throughout this proof and the proof of Theorem

1.2, ignoring the deviation from equality whenever it neither affects the logical flow of the proof nor

changes the numerical result significantly.

By Stirling's approximation [KNU-a 73],

r(n+l)=V27rn(n/e)n,and

ln(r(n+1)) = ln(V27T)+0.5 ln(n)+n(ln(n) -1)

= n ln(n),

since we arc considering relatively large n's.

168-

APPENDIX I. COMPUTATIONAL ERRORS

From Eq. (1.3),

(1-4)

b(m,p,k)=l-exp[LGAM(n-p+l)+LGAM(n-k+l)-LGAM(n-p-k+l)-LGAM(n+l)]

= -LG AM(n-p+1)-LG AM(n-k+1)+LG AM(n-p-k+1)+LG AM(n+1).

Let us consider the case in which k=1. At this k value, all four terms in Eq. (1.4) are close to n ln(n),

the result is the smallest possible, and we shall get the maximum error. If we assume that evaluation

of Eq. (1.4) causes the error of ±1 in the LSD, then the error of the result will be

10_x X n ln(n),

where x is the number of significant digits.

The exact value of the result of Eq. (1.4) must be 1/m, since only one block will be hit. Therefore,

the relative error caused by the computation with x significant digits will be

(1(TX X n ln(n))/(l/m)=(mn ln(n)) X 10_x. (1-5)

If we require this to have an error of less than 10_d, so that we have d digits of precision in the result

with a possible error of ±1 in the LSD, Eq. (1.5) must be less than 10_d. Therefore,

x > log10(mn ln(n)) + d. Q.E.D.

Theorem 1.2: x > (log10 m)+d+log10(d)+1 valid digits with a possible error of ±1 in the LSD

are sufficient in the calculation of Eq. (1.1) to d digits of precision.

Proof: The major cause of the error is in the calculation of 1-1/m as m gets larger, since it

requires as many digits as log10 m. We shall use the equality (1- l/m)m = e_1 throughout, assuming

that m is sufficiently large. For convenience let us consider only the first term of Eq. (1.1), since the

other terms behave similarly and their absolute values are always less than (1-1/m) .

Let us divide the values of k into 3 ranges: k < 0.1m, k > ln(10)XdXm, and 0.1m < k <

ln(10)XdXm.

(1) k < 0.1m

From a Taylor expansion we have

- 169-

APPENDIX I. COMPUTATIONAL ERRORS

(l-l/m)k=l-k/m+k(k-T)/2 X (1/m)2... i 1-k/m, and thus

l-(l-l/m)k = k/m.

In the calculation of (1- 1/m) we have an error of 10_x, so that, as a result of computation, we get

(l-l/m+Hrx)k= l-k(l/m- 10"x).

(For convenience let us consider only a positive error. Negative errors can be treated similarly.)

Accordingly, the error of the overall calculation will be

(k(l/m- 10~x)-k/m)/(k/m)=-10~x Xm.

Thus, we get a precision of d digits in the result if and only if

10"xXm <NTd,or

x>0og10m)+d.

(2)k>ln(10)XdXm

In this case 0 < (1 - l/m)k < 10 ~d. Hence,

1 > l-(l-l/m)k> l-l(Td>0.9,

assuming d > 1. However, actual computation may yield

l-(l-l/m + 10"x)k.

Since

x>(log10m)+d+l,

we have

10~x < (l/m)10~(d+1).

Since

(l-l/m+10_(d+1)/m)k

= (l-(l-10_(d+1))/m)k

<(1_(l_10-(d+i))/m)NlO)XdXm

= 10-(l-lO-(d+1))Xd^10-d

assuming d>l, the relative error, ((l-l/m)k - (l-l/m + 10_x)k)/0.9, cannot be greater than

(1/0.9X10 _d)=: 10 _d. Thus we have a precision of d digits in the result

(3)0.1m<k<ln(10)XdXm

- 170

APPENDIX I. COMPUTATIONAL ERRORS

We have

ln[((l - l/m)+10_x)/(l- l/m)k]

= k(ln(l-l/m+l(Tx)-ln(l-l/m))

= k((l-l/m+l(Tx)-(l-l/m))

= k X 10"x.

Accordingly,

((1 - 1/m+10~x)k- (1 - 1/m) V(l - l/m)k

= exp(kX10_x) - 1.

a) m<k<(ln 10)XdXm

The relative error will be

((1 - 1/m + l(Tx)k- (1 - l/m)k)/(l - (1 - l/m)k)

<((l-l/m + 10-x)k-(l-l/m)k))/(l-l/m)k

= exp(kX10~x) - 1

< exp((k/md)X10~(d+1)) - 1

< exp(ln(10)XKT(d+1)) - 1

<ln(10)X10_(d+1>

= 0.23X10_d.

Thus, we have a precision of d digits.

b)0.1m<k<m

We have

(l-l/m)k = l-k/m<0.9.

Hence, the relative error will be

((1 - 1/m +10 - x)k - (1 - l/m)k)/(l - (1 - l/m)k)

<(l/0.1)((l-l/m+10-x)k-(l-l/m)k)

< 10((1 - 1/m+10 - x)k - (1 - l/m)k)/(l - l/m)k

= 10(exp(kX10~x) - 1)

< 10(exp((k/m)X10"(d+1)) - 1)

< 10((k/m)X10_(d+1))

-171-

APPENDIX I. COMPUTATIONAL ERRORS

< 10Xl(T(d+1)

= l(Td.

This shows that we have a precision of d digits. Q.E.D.

Corollary: Eq. (1.1) requires at least x > (log10 m)+d valid digits to get d digits of precision in the

result

Proof: This follows from the case (1) of Theorem 1.2. Q.E.D.

Applying Theorem 1.2 and its corollary, the actual requirement will be

(log10m)+d < x < (log10m)+d+log10(d)+l.

Example 1: Let us calculate the number of valid digits required by the evaluation of Eq. (1.1) and

Eq. (1.3), respectively, when m = 106, p = 10, n = 107, and we need a precision of 2 digits in the result.

(a) For Eq. (LI),

log10(106)+2 + log10(2)+1 = 9.3,

log10(106)+2 = 8,and

8 < x < 9.3.

(b)ForEq.(I.3),

x = log10(106 X 107 X ln(107)) + 2

= 16.3.

We note that Eq. (1.3) requires roughly twice as many valid digits as does Eq. (1.1). D

In the exhaustive calculation we made over the range specified in Appendix C, the maximum

error (0.2%) occurred at m = 106, p = l, and k « m (i.e. k~l), which actually corresponds to the

lower bound given in the corollary.

Example 2: The error of 0.2% is equivalent to a precision of 2 digits according to our definition,

- 172-

APPENDIX I. COMPUTATIONAL ERRORS

since 0.998 compared with 1.0 clearly has an error exceeding 1 in the third digit, and the first and

second digits are the only valid digits with possible error of ±1 in the LSD. Thus, the number of

valid digits x of the computer required by Eq. (1.1)) when m=106 will be

8 < x < 9.3

The DECSYSTEM-20 has 2~ of resolution, approximately corresponding to 8 valid digits, which

confirms our result D

1.2 Computational Error in an Extended Range

The maximum computational error when the number of blocks m is extended to 107 is 4.3%; it

occurs at k = 1 for all values of p. •

We assumed throughout that m has only integer values. However, computer calculation

performed over all combinations of the following range shows that the maximum deviation of Eq.

(1.1) from the exact formula is 3.7%, even for the real values of m.

• 1.1 < p < 3.9 with increments of 0.1,

• 1 < p < 10 where p is an integer,

• 1.1 < m < 3.9 with increments of 0.1.

The general shape of the deviation can be found in Appendix C.

173

APPENDIX J. SUPPLEMENTARY DISCUSSIONS ON DESIGN ALGORITHMS

Appendix J. Supplementary Discussions on
Design Algorithms

This appendix consists of six sections. In Section J.l more details are presented on the

development of physical design algorithms that have not been fully discussed in Chapter 4. In

Section J.2 are discussed more details on the strategy of handling virtual columns (multiattribute

columns). In Section J.3 more complete formulas for the time complexities of the Index Selection

Step and the Exhaustive-Search Method are derived. The two situations that produced deviations in

the tests are analyzed in Section J.4.

J.1 More Details on Design Algorithms

In this section we discuss some details on the development of the design algorithms that have not

fully explained in Chapter 4. Specifically, we have the following four fine details to discuss:

1. An index together with the clustering property

In the Clustering Design Step (or NS Clustering Design Step), an index is assigned together with the

clustering property if the column has not been assigned one in the Index Selection Step (or NS

Index Selection Step). If the column has an index already, only the clustering property is assigned.

This strategy has been used on the basis of the observation that in almost none of optimal solutions a

column possesses the clustering property without an index (except for degenerate cases in which

multiple optimal solutions exist). This observation confirms the belief that the clustering property is

best utilized when it is coupled with an index. Furthermore, although there is nothing wrong in

having a clustering column without an index in the access configuration as far as it is one of the

optimal solutions, having such a column during the design process could hinder smooth transitions

of access configurations resulting in a nonoptimal solution. These considerations support the

strategy of assigning an index together any time the clustering property is assigned to a column.

- 174-

APPENDIX J. SUPPLEMENTARY DISCUSSIONS ON DESIGN ALGORITHMS

2. Index selection before clustering design

The Index Selection Step must precede the Clustering Design Step in the iteration loop. In the

preliminary algorithm introduced in[WHA-a 81], clustering design is performed before index

selection. However, doing so posed the following problem. If the Index Selection Step precedes the

Clustering Design Step, clustering design is performed with a full index set in the first iteration. As a

result the total index update cost, which constitutes a major portion of the total update cost, stays the

same whichever column acquires the clustering property. Thus, in determining the optimal

clustering column, there is a possibility that the clustering property is assigned to a column that is

heavily updated. The problem is that, in the Index Selection Step performed next, the column

endowed with the clustering property (which has a heavy update cost) has a tendency to release

neither the clustering property nor the index even though an index is not worth its update cost

because an index coupled with the clustering property yields much more benefit than the index

alone so that the index may look like worth of its own update cost. The result would be a wrong

index and a wrong clustering column. Furthermore, this mistake won't be corrected in future

iterations.

We can avoid this anomaly by swapping the order of the two design steps. We start with index

selection assuming no clustering column initially. Since no indexes are coupled with the clustering

property, all the indexes can be compared on a fair basis. The indexes that do not compensate for

their own update cost will subsequently be dropped. The clustering property is assigned in the next

step when all insignificant indexes have been dropped. Note that although we swapped the two

steps, the same problem can arise since the Index Selection Step follows the Clustering Design Step

of the previous iteration; but it would be much less hazardous than in the first iteration.

3. All join methods allowed in the first iteration

-175-

APPENDIX J. SUPPLEMENTARY DISCUSSIONS ON DESIGN ALGORITHMS

In Phase 1 of Algorithm 1 and 2, during the first iteration, we allow all join methods for update

transactions. In Section D.3.2 it was shown that, in Phase 1, only the join index method can be used

for update transactions having join predicates. This restriction led to an anomaly that the join

indexes used by update transactions must not be removed in Phase 1. We greatly alleviated this

anomaly by introducing the Perturbation Step. However, further improvement can be achieved by

releasing the constraint during the first iteration so that other join methods may be used as well, and

the join indexes for update transactions can be dropped. Note that this strategy is not logically

correct but is only a temporary measure to make a smooth flow of design process. The constraint is

imposed again from the second iteration.

4. Calculation of the selectivity

The selectivity of a range predicate (that has an operator such as <,< = ,>,> =) is arbitrarily set to

1/4. A more elaborate method for estimating the selectivity of a range predicate would be to

interpolate based on the highest and the lowest values in the column and the value specified in the

predicate. However, specific methods of estimating the selectivity of a range predicate does not

affect the general validity of the design algorithms. Therefore, in this dissertation, a most simplistic

method is employed.

J.2 Virtual Columns

In this section we discuss the strategy of handling virtual columns. Virtual columns are necessary

to support indexes defined on two or more attributes (multiattribute indexes). The general

treatment of multiattribute indexes adds another level of complexity to the already complex index

selection problem. (A very simplified version of the index selection problem has been proved to be

NP-complete by Comer [COM 78].) Moreover, in the context of our model, multiattribute indexes

are not necessary for resolving restriction predicates. Restriction predicates referring to more than

one attribute can always be resolved by forming the intersection of TID sets from the indexes

- 176

APPENDIX J. SUPPLEMENTARY DISCUSSIONS ON DESIGN ALGORITHMS

involved to the same effect of a multiattribute index. (Let us remember that we have assumed that

TID manipulation causes negligible I/O accesses.)

When a join predicate that refers to more than one attribute is resolved, however, individual

single-attribute indexes cannot be used as a substitute for a multiattribute index: join indexes must

be scanned according to the order of join column values, but this order cannot be achieved by

simply intersecting the single-attribute indexes that are defined for the join attributes. Thus, in

principle, we need to consider a multiattribute index for every set of join attributes that appear

together in a join predicate. Each set of join attributes are subsequently mapped into a virtual

column.

Sets of attributes constituting virtual columns are specified in the schema information. Virtual

columns are defined only for the sets of attributes that are semantically relevant as join attributes.

The concept of connections and connecting attributes is borrowed from the Structural Model [WIE

79] for this purpose. The structural model defines the connection as the representation of a

semantically meaningful relationship between two relations, and connecting attributes as the

attributes establishing the relationship that corresponds to a connection on the basis of equality of

their values. We define semantically relevant joins as those associated with connections.

Accordingly, the connecting attributes of a connection are mapped into a virtual column. Let us

note that, in evaluating the joins that are not semantically relevant but have more than one join

attributes, the join index method cannot be used since virtual columns and accordingly

multiattribute indexes are not provided for their join attributes.

In Figure J-l below, is illustrated a simple database schema with connections and virtual columns

as well as ordinary single-attribute columns. The symbol "*" in a connection indicates N-side

relation in the 1-to-N relationship that the connection represents.

Another purpose of defining a virtual column is to provide a correct selectivity of an equality

- 177-

APPENDIX J. SUPPLEMENTARY DISCUSSIONS ON DESIGN ALGORITHMS

| SHIPID | SHIPNAME | SHIPS

VOYAGES

| SHIPID | VOYAGENUMBER | CHARTERER

\ /

VOYAGES

\/
I
I *
A

/ \

| SHIPID | VOYAGENUMBER | STOPNUMBER | STOPS

Columns:

In Relation SHIPS : SHIPID, SHIPNAME
In Relation VOYAGES : SHIPID, VOYAGENUMBER, CHARTERER
In Relation STOPS : SHIPID, VOYAGENUMBER, STOPNUMBER

Virtual Columns:

In Relation VOYAGES : SHIPID-VOYAGENUMBER
In Relation STOPS : SHIPID-VOYAGENUMBER

Figure J-l: Relations, Connections, Columns, and Virtual Columns.

predicate referring to more than one column. If the predicate refers to only one column, the

selectivity is estimated as the inverse of the column cardinality (the number of distinct values

existing in a column). If the predicate refers to more than one column, i.e., if the predicate is a

conjunction of more than one simple equality predicate that refers to a single column, the selectivity

is often estimated as the product of inverses of column cardinalities of the columns referred in the

predicate (let us call the set of these columns the column set). Such an estimation is valid, however,

only under the assumption that there is no correlation among the columns [SCH 75]. This

assumption implies that every possible combination of distinct values from individual columns in

the column set must exist in the database. This assumption is obviously impractical in most cases.

178-

APPENDIX J. SUPPLEMENTARY DISCUSSIONS ON DESIGN ALGORITHMS

When a restriction predicate is considered, however, we extend the assumption as follows: For each

nonexistent value combination, a hypothetical tuple is created, and it is assumed that the predicates

applied to the column set select each tuple of distinct value (including hypothetical tuples) with

equal probability. If the predicate selects hypothetical tuples, the response will be null. This

assumption is further elaborated in Example A.l.

Example A.l: Let us assume that we have the following data for a column set (A, B, C). The data

represent the projection of a relation on the column set Duplicates are removed so that unique value

combinations are represented by one tuple in the projection.

Column Set ABC

3i bl u1
Data a1 b2 Cj

a2 bx c2

h. b2 c2

If hypothetical tuples are included, the data for the column set become

Column Set ABC
al bl ci
a b, c2 hypothetical

Data \ b2 cx
b, c2 hypothetical
b, cx hypothetical
bi c2
b, c, hypothetical

al

h bl C2
a2 b2
a2 b2 c2

Then, the assumption states that the predicate of the form (A = 'a') AND (B = 'b') AND (C =

'c') refers to each (distinct) tuple in the data including hypothetical tuples with equal probability.

Thus, the probability that the value combination <a2> b2, cx> is to be accessed is 1/8. D

The above assumption is an extension of the uniformity assumption applied to individual

columns; the uniformity assumption asserts that the equality predicate referring to a column selects

each distinct value in that column with equal probability and that there exist an equal number of

- 179-

APPENDIX J. SUPPLEMENTARY DISCUSSIONS ON DESIGN ALGORITHMS

tuples for each distinct value. Under this extended uniformity assumption the joint selectivity of a

column set becomes the product of the selectivities of the component columns. (For simplicity, we

define the selectivity of the column as the selectivity of an equality predicate for a column.)

Although the extended uniformity assumption is useful for estimating the joint selectivity of a

restriction predicate, it cannot easily be applied when a join predicate is concerned. When a join

operation is performed, values of join attributes from each relation are compared for a possible

match. Hence, the join predicate is only tested with the join attribute values that actually exist in the

database; that is, hypothetical tuples are never selected. For this reason, the probability of an

existing tuple to be selected is far greater than what would result from the extended uniformity

assumption. This phenomenon is further illustrated in Example A.2.

Example A.2: Consider the following relation:

Attributes: EMP-NAME CHILD-NAME AGE
John Meadows Jack 3
John Meadows Alby 5

Data John Meadows Sara 7
Charlie Fu Randy 5
Charlie Fu David 10

The column cardinality for EMP-NAME is 2; that for CHILD-NAME is 5. Thus, the selectivity

of the column EMP-NAME is 1/2; that for CHILD-NAME is 1/5. If EMP-NAME and CHILD-

NAME are referred together in a restriction predicate, the joint selectivity of the two columns is

1/10. This is so because it is conceivable that a user specifies a predicate such as (EMP-NAME =

'John Meadows') AND (CHILD-NAME = 'Randy'). If the two columns are specified together in a

join operation (i.e., EMP-NAME and CHILD-NAME are the join attributes), however, a predicate

such as (EMP-NAME = 'John Meadows') AND (CHILD-NAME = 'Randy') are never tested since

all the values of the columns are supplied from within the database. Thus, the joint selectivity of the

two columns is 1/5, the inverse of the cardinality of the virtual column (EMP-NAME, CHILD-

NAME). D

180

APPENDIX J. SUPPLEMENTARY DISCUSSIONS ON DESIGN ALGORITHMS

So far, it has been shown that joint selectivities are different according to the type of predicates we

consider. The difference can be reflected in the design process by specifying a selectivity for each

virtual column. Thus, the virtual column and its selectivity will be used when a multiattribute join is

performed, whereas selectivities of individual columns will be used when a multiattribute restriction

is resolved.

During the design process a virtual column is considered as yet another independent column

without any difference from an ordinary column. There is one exception, however, when the

clustering property is assigned to a virtual column. When a relation is sorted according to the order

of a multiattribute column, it is also sorted according to the order of its first component column.

Thus, if a virtual column is assigned the clustering property, so should its first component column

be, but not vice versa.

J.3 More Details on Time Complexities

In this section we provide a more detailed derivation of the time complexity of the Index

Selection Step in Algorithm 1 and Algorithm 2. The time complexity of NS Index Selection Step in

Algorithm 3 can be derived similarly. The time complexity of the Exhaustive-Search Algorithm is

also presented.

1. Index Selection Step

The following notation will be used throughout this section:

v • Number of columns in a relation (number of indexes in a full index set)

v : Number of indexes remaining when the index selection substcp with k=l
(corresponding to substeps 2, 3, and 4 of the Index Selection Step in Section
D.5.1) has been completed, k is the maximum number of indexes that have been
considered together at a time.

v.: Number of indexes remaining when the index selection substep with k = i has
been completed.

- 181

APPENDIX J. SUPPLEMENTARY DISCUSSIONS ON DESIGN ALGORITHMS

s: Average number of relations referred to in a transaction,

t: Number of transactions in the input usage information,

c: Total number of columns in the database

Cj: Number of columns in relation i.

Let us first consider the time complexity of the index selection substep with k = 1. During the first

iteration in the substep, the algorithm tries to drop one index at a time, actually dropping the one

that yields the maximum benefit. Thus (s/r)XtXvQ calls to the cost evaluator (EVALCOST-1) are

necessary. The factor (s/r)Xt takes into account that, on the average, (s/r)Xt transactions refers the

relation being considered. During the second iteration only (s/r)XtX(vQ-l) calls are necessary

since an index has been already dropped in the first iteration. As a result, for the entire substep with

k = 1, the number of calls to the cost estimator will be

(s/r)XtX(v0 + (v0-1) + (v0-2) + ... + Vl). (J.l)

Now let us consider the substep with k = 2. This substep starts with \1 indexes that survived the

substep with k = 1. During the first iteration the algorithm tries to drop every possible pair among v,

indexes; hence, the cost evaluator will be called (s/r)t(v1(v1~l)/2) times. For the second iteration,

it will be called (s/r)t(v1-2)(v1-3)/2 times. Thus, for the entire substep with k = 2, the number of

calls to the cost evaluator will be

0.5 (s/r)t(Vl(Vl -1) + (Vl - 2)(Vl - 3) + (vx - 4)(vx - 5) + ... + v2(v2 -1)). (J.2)

The complexities for higher values of k can be obtained analogously.

As we sec in Equations ((J.l)) and ((J.2)), the time complexities have a dynamic nature in that

they depend on the number of indexes remaining after each substep. In general, however, the

complexity of the first substep is 0((t/r)vQ
2) and that of the second substep is 0((t/r)vQ

3) since vx

will be roughly proportional to vQ. Analogously, complexities for higher values of k, in general,

would be 0((t/r)vQ
k+1). Since a higher order substep has a higher order complexity, the

complexities of lower order steps become negligible as vQ gets larger. Thus, the overall complexity of

the Index Selection Step is O((t/r)v0
k+1).

- 182-

APPENDIX J. SUPPLEMENTARY DISCUSSIONS ON DESIGN ALGORITHMS

2. Exhaustive-Search Algorithm -

The time complexity of searching all the possible alternative access configuration for the entire

database is obtained as

tX(cx+l)(c2+l)...(cf+1)X2C. (J-3)

The factor 2C accounts for the number of possible index configuration since every column in the

database can either have an index or not. The factor (a + 1) represents the number of possible

clustering positions in relation i (including the case with no clustering column). The number of

possible index configuration multiplied by the number of clustering positions in every relation will

constitute the total number of access configurations for the entire database. For each access

configuration, the cost evaluator (EVALCOST-2) will be called by the number of transactions, t, in

the usage information. Thus, Equation (J.3) gives the total number of calls to the cost evaluator for

searching through all the alternative access configurations.

J.4 Analysis of Deviations

In most situations that are tested in Section K, all three algorithms produced optimal solutions. In

some cases, however, some deviations occurred from the optimal solutions: Algorithm 1 produced a

deviation of 3.1% in Situation 50; Algorithm 1 and Algorithm 3 produced 6.6% in Situation 42. In

this section these situations are investigated and the deviation analyzed.

The following notation will be used throughout this section:

1: A clustering column with an index
0: A column with an index only
X: A column with neither an index nor the clustering property
*: A column with the clustering property but no index

1. Algorithm 1 in Situation 50

Figure J-2 shows access configurations for relations R, and R, at each design step of Algorithms

183-

APPENDIX J. SUPPLEMENTARY DISCUSSIONS ON DESIGN ALGORITHMS

1, 2, and 3. Access configurations of the other relations are not shown since they are identical to the

optimal solution. Only first two iterations are shown since there are no more improvements from

the third.

Relation | R2 || R5

Column |Cl C2 C3 C4|C1 C2 C3 C4|C1 C2 C3 C4||C1 C2|C1 C2|C1 C2

Design Step | Alg.l | Alg.2 | Alg.3 ||Alg.1|Alg.2|Alg.3

Index Sei. |0 0 0 0 | N/A |0 0 0 0 ||0 X |N/A |X X
Cluster Des.|0 0 0 1 10 0 0 1 10 0 0 1 | 11 X 11 X | X 1
Perturbation|X 0 0 1 |X 0 0 1 | N/A jjl X jl X j N/A
Index Sei. |X 0 0 1 | N/A |0 0 0 1 jjl X |N/A |X X
Cluster Des.|X 0 0 1 |X 0 0 1 |0 0 0 1 ||1 X |X 1 jx 1
PerturbationIX 0 0 1 10 0 0 1 I N/A 111 X IX 1 IN/A

Figure J-2: Access Configurations for R2 and R$ at Each Design Step.

In this situation Algorithm 2 and Algorithm 3 both found the optimal solution. Algorithm 1,

however, resulted in a slight deviation from the optimal solution. Compared with the optimal

solution, the access configuration that Algorithm 1 produced has the clustering property on R^Cj

instead of R5.C2 and lacks an index on R2-Cr

R, has the clustering property on Cx because, in the Index Selection Step during the first

iteration, an index has been assigned to Cr The column Cx subsequently acquired the clustering

property since the configuration (1 X) is less costly than (0 1), and the same configuration stayed

until the algorithm terminated. Since the clustering design is performed in a separate step in

Algorithm 1, the configuration (X 1), which is less costly than (1 X) cannot be reached without

passing through (0 1). Thus, the deviation in this situation is partially due to the separation of the

Index Selection Step and the Clustering Design Step, i.e., vertical partitioning.

Let us note, however, that the error situation occurs because R5 obtains an index on Cx in the first

Index Selection Step. (In comparison, Algorithm 3 docs not assign an index to R5.C1, even though it

184

APPENDIX J. SUPPLEMENTARY DISCUSSIONS ON DESIGN ALGORITHMS

also has separate Index Selection and Clustering Design Steps.) The index is assigned on Cx because

it is more beneficial to use the join index method for Transaction 5 than to use the sort-merge

method. The inner/outer-loop join method-the one used in the optimal solution-cannot be used

in the index selection step because of the conditions for separability. Thus, horizontal partitioning

also partially caused the deviation. We note that Algorithms 2 and 3, which utilize only one type of

partitioning, do not produce any deviation.

The index on R2.C1 is dropped by Algorithm 1 since, in processing Transaction 5, it is more

beneficial to use the inner/outer-loop join method with the join direction from R2 to R5 and to drop

the index on R2.C1 than to use the join index method while retaining that index. The inner/outer-

loop join for R2 to R5 has an advantage especially because R5.CX has the clustering property.

The access configuration produced by Algorithm 1 is only slightly different from the optimal

solution. Accordingly, when the frequencies of the transactions are changed in Situations 51 and 52,

this deviation disappears and all three algorithms find the optimal solution.

2. Algorithm 1 and Algorithm 3 in Situation 42

The deviation in this situation occurred due to a very peculiar reason that the access

configurations (0 0 X) for relation DOCKS yields the exactly same cost as those of (1 0 X) and (0 1

X). (Optimal solutions are (1 X X) and (X 1 X).) The access configuration (0 0 X) is obtained from

the Index Selection Step of the first iteration. Since, in the next step (Clustering Design Step) the

clustering property is assigned only if there is nonzero improvement in the cost, the clustering

property cannot be assigned. (That is, neither (1 0 X) nor (0 1 X) docs not yield positive

improvement in the cost compared with (0 0 X).)

If the clustering property were assigned to any one of the first two columns, the other of the two

would be dropped in the Index Selection Step of the next iteration yielding an optimal solution.

- 185-

APPENDIX J. SUPPLEMENTARY DISCUSSIONS ON DESIGN ALGORITHMS

This deviation could be made somewhat significant: by deliberately adjusting the frequency of

Transaction 12 up to 175, a deviation of 27.2% has been observed. However, since the mechanism

that caused this error is very peculiar, it is believed that the chance of the mechanism being invoked

is negligible when more transactions acting upon relation DOCKS are added in the usage. (The

chance that two different access configurations have the exactly same cost is very slim.) Also, when a

large database is considered, the local deviation caused by this mechanism might well be just a small

portion of the entire cost, so that the relative deviation of the entire design may be negligible.

- 186-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

Appendix K. The Physical Database Design
Optimizer-An Implementation

In this section we introduce the Physical Database Design Optimizer(PhyDDO) which

implements the three design algorithms. Also, a set of input situations that have been tested to

validate the design algorithms and their results are presented.

As in Appendix J.4, the following notation will be used throughout this appendix:

1: A clustering column with an index
0: A column with an index only
X: A column with neither an index nor the clustering property
*: A column with the clustering property but no index

The PhyDDO is an experimental system to develop various heuristics for the physical database

design. Besides the three design algorithms, implemented in the PhyDDO are the Exhaustive-

Search Algorithm and the one-shot evaluator that simply evaluates the cost of the access

configuration initially given by the user. The latter has been proved to be an effective tool for

debugging the system. The system accepts eight types of transactions:

SQ: Single-relation (one-variable) queries

JQ: Two-relation (two-variable) queries having join predicates (i.e., two-relation joins)

AQ: Single-relation queries having aggregate operators in their SELECT clauses, or
GROUP BY constructs [CHA 76] or both. (A type AQ transaction is essentially a
partial-join between the GROUP BY column and the relation itself as far as the
I/O access cost is concerned.)

SU: Single-relation update transactions.

JU: Update transactions having join predicates.

SD: Single-relation deletion transactions.

JD: Deletion transactions having join predicates.

INS: Insertion transactions (single-relation transactions only).

-187-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

Transactions are specified together with their types and frequencies as the input usage

information. On the other hand, the schema and the data characteristics for the database are

specified as the input schema information. An example of complete input information for a

database consisting of two relations is presented in Figure K-l.

-188-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

SCHEMA
RELATIONS

RELATION Rl
RELCARD 50
NBLOCKS 10
BLKFAC 5
COLUMN Cl

C0LCARO SO
NIBLK 1
IBLKFAC 200
CLUSTERED 1
INDEX 1

COLUMN C2
COLCARD 60
NIBLK 1
IBLKFAC 200
CLUSTERED 0
INDEX 0

COLUMN C3
COLCARD 50
NIBLK 1
IBLKFAC 200
CLUSTERED 0
INDEX 0

RELATION R2
RELCARD 1000
NBLOCKS 100
BLKFAC 10
COLUMN Cl

COLCARD 1000
NIBLK 5
IBLKFAC 200
CLUSTERED 0
INDEX 0

COLUMN C2
COLCARD 7
NIBLK 5
IBLKFAC 200
CLUSTERED 0
INDEX 0

COLUMN C3
COLCARD 50
NIBLK 5
IBLKFAC 200
CLUSTERED 1
INDEX 1

CONNECTIONS

CONNECTION
REL1 Rl
COL1 Cl
JSEL1 1 .0
RELN R2
COLN C3
JSELN 1 .0

USAGE
TRANSACTION 1

TYPE SO FREQ 100
SELECT R1.C1. Rl. C3
FROM Rl(0.5)
WHERE R1.C2 = "ANY" AND

R1.C1 - 3

TRANSACTION 2
TYPE JQ FREQ 50
SELECT R1.C1, R2.C1
FROM Rl(0.3). R2(0.3)
WHERE R1.C1 = R2.C3 AND

R2.C1 > 500

TRANSACTION 3
TYPE SU FREQ 10
UPDATE Rl
SET R1.C3 = "ANY"
WHERE R1.C2 = "ANY"

TRANSACTION 4
TYPE JU
UPDATE R2

FREQ 10

-189-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OFflMIZER - AN IMPLEMENTATION

SET R2.C2 = R2.C2 + 1
FROH R2(t). Rl(0.3)
WHERE R2.C3 = Ri.Cl AND

R1.C3 = "ANY" AND
R2.C2 > 5

TRANSACTION 5
TYPE SD FREQ 10
DELETE R2
WHERE R2.C2 >=■ 7

TRANSACTION 6
TYPE JD FREQ 10
DELETE Rl
FROM Rl, R2(0.2)
WHERE R1.C1 = R2.C3 AND

R2.C2 > 7

TRANSACTION 7
TYPE INS FREQ 10
INSERT INTO R2:

<1001. "ANY". 20000, 3, 1>

Figure K-l: An input specification for PhyDDO.

The keywords used in the schema and usage specification in Figure K-l are explained below:

Relcard: Number of tuples in a relation (relation cardinality).

Number of disk blocks a relation occupies.

Number of tuples in one disk block (blocking factor).

Number of distinct values in a column (column cardinality).

Number of disk blocks that an index would occupy if it existed.

Number of index entries in one disk block (index blocking factor).

Nblocks:

Blkfac:

Colcard:

Niblk:

Iblkfac:

Clustered: 1 if the column is clustered in the initial access configuration given by the user; 0
otherwise. If not explicitly specified, the default is 0.

Index: 1 if the index exists in the initial access configuration given by the user; 0
otherwise. If not explicitly specified, the default is 0.

Mcolumn: A multiattribute column in a relation (virtual column).

Components: Component columns of a multiattribute column.

Rell: The relation on the 1-side of 1-to-N relationship represented by a connection
(Relation 1).

Coll: Connecting attribute of Relation 1. A virtual column if there are more than one
connecting attribute.

Jsell: Ratio of the number of distinct join column values participating in the

- 190

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

unconditional join (a join without restriction predicate) to the total number of
distinct join column values or the ratio of the number of nondangling tuples to
the total number of tuples (join selectivity).

RelN: The relation on the N-side of 1-to-N relationship represented by a connection
(Relation N).

ColN: Connecting attributes of Relation N.

JselN: Join Selectivity for Relation N.

Type: Transaction type.

Freq: Relative frequency of a transaction.

As outputs, the system produces the optimal access configuration of the database and the total

processing cost. It also produces optimal join methods and their costs for two-variable transactions.

Twenty one different input situations have been tested to validate the heuristics used in the design

algorithms. The input situations tested consist of seven schemas, each schema being accompanied

by three variations of usage specification. First, the transactions and their frequencies are defined so

that by intuition they look most natural. Second, according to the test result with the first usage

specification, the frequencies are modified so that the costs of transactions are roughly of the same

order. This modification prevents a few most costly transactions from dominating the results of the

design. Third, all the queries are eliminated from the usage specification leaving only update

transactions. This modification simulates a situation where there are heavy updates.

Described in Figures K-2 to K-8 are all the tested input situations as they are submitted to the

Physical Database Design Optimizer together with their optimal solutions. Each input situation is

named as Situation ij where i € (1,2,3,4,5,6,7) shows which schema is used, and j € (0,1,2) which

variation of the usage information is used. To simply the illustrations, for each schema, three

situations with different usage specification have been merged into one figure: in the usage

specification, relative frequencies from three situations arc specified in the same row in the order of

- 191 -

APPENDIX K. TUE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

j; in the illustration of the optimal solutions (except for Situations 70, 71, and 72) three solutions are

presented from the top in the order of j, using the notation introduced in Appendix J. For

Situations 70, 71, and 72, optimal solutions are presented in text form since they are too big to be

drawn in a figure.

A copy of the source code for PhyDDO and an executable file are stored in <kbms> PhyDDO.pas

and PhyDDO.exe at SRI-AI. The LALR syntax description of the usage and schema information

(including the syntax of the transactions supported) can.be found in <kbms> PhyDDO.grammar.

- 192-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

SCHEMA
RELATIONS

RELATION Rl
RELCARD 50
NBLOCKS 10
BLKFAC 5
COLUMN Cl

COLCARD SO
NIBLK 1
IBLKFAC 200
CLUSTERED 1
INDEX 1

COLUMN C2
COLCARD 50
NIBLK 1
IBLKFAC 200
CLUSTERED 0
INDEX 0

COLUMN C3
COLCARD 50
NIBLK 1
IBLKFAC 200
CLUSTERED 0
INDEX 0

RELATION R2
RELCARD 1000
NBLOCKS 100
BLKFAC 10
COLUMN Cl

COLCARD 1000
NIBLK 5
IBLKFAC 200
CLUSTERED 0
INDEX 0

COLUMN C2
COLCARD 7
NIBLK 5
IBLKFAC 200
CLUSTERED 0
INDEX 0

COLUMN C3
COLCARD 50
NIBLK 5
IBLKFAC 200
CLUSTERED 1
INDEX 1

CONNECTIONS

CONNECTION
REL1 Rl
COL1 Cl
JSEL1 1.0
RELN R2
COLN C3
JSELN 1.0

USAGE
TRANSACTION 1

TYPE SO FREQ 100
SELECT Rt.Cl, R1.C3
FROM Rl(0.5)
WHERE R1.C2 = •ANY" AND

R1.C1 ' 3

1000 Deleted

TRANSACTION 2
TYPE JQ FREQ 50
SELECT Rl.Cl. R2.C1
FROM Rl(0.3). R2(0.3)
WHERE R1.C1 = R2.C3 AND

R2.C1 > 500

50 Deleted

TRANSACTION 3
TYPE SU FREQ 10
UPDATE Rl
SET R1.C3 = "ANY-
WHERE R1.C2 = "ANY"

100 100

TRANSACTION
TYPE JU FREQ 10 100 100

- 193

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

UPDATE R2
SET R2 C2 = R2.C2 + 1
FROM R2(l) Rl(0.3

= Rl.Cl WHERE R2 C3 AND
Rl C3 = "ANY" AND

SACTIO

R2

4

C2 > 5

TYPE SD FREQ 10
DELETE R2
WHERE R2 C2 >= 7

SACTIOH
TYPE JD FREQ 10
DELETE Rl
FROM Rl R2 (0.2)
WHERE Rl Cl = R2.C3 AND

R2 C2 > 7

100 100

100 100

TRANSACTION 7
TYPE INS FREQ 10 1000 1000
INSERT INTO R2:

<1001. "ANY". 20000, 3. 1>

194

APPENDIX K. THEPIIYSICAL DATABASE DESIGN OPTIMIZER-AN IMPLEMENTATION

SCHEMÄ1X

R1 50

C1 C2 C3

50 50 50

1
1
1

X
X
X

1
1
1

} <:
R2 100C)

C1 C2 C3

1000 7 50

1
1
1

X
X
X

X
X
X

10

100

Figure K-2: Situations 10,11,12, and their optimal solutions.

- 195

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

SCHEMA
RELATIONS

RELATION COUNTRIES
RELCARD 100
NBLOCKS 20
BLKFAC 5

COLUMN COUNTRYNAME
COLCARD 100
NIBLK 1
IBLKFAC 200
CLUSTERED 0
INDEX 1

COLUMN POPULATION
COLCARD 100
NIBLK 1
IBLKFAC 200
CLUSTERED 0
INDEX 1

RELATION SHIPS
RELCARD 1000
NBLOCKS 100
BLKFAC 10

COLUMN ID
COLCARD 1000
NIBLK 5
IBLKFAC 200
CLUSTERED 0
INDEX 1

COLUMN S«-C0UNTRY
COLCARD 30
NIBLK 5
IBLKFAC 200
CLUSTERED 0
INDEX 1

RELATION VOYAGES
RELCARD 100000
NBLOCKS 5000
BLKFAC 20

COLUMN SHIP<-ID
COLCARD 1000
NIBLK 500
IBLKFAC 200
CLUSTERED 0
INDEX 1

COLUMN VOYAGENO
COLCARD 200
NIBLK 500
IBLKFAC 200
CLUSTERED 0
INDEX 1

COLUMN CHARTERER
COLCARD 10000
NIBLK 500
IBLKFAC 200
CLUSTERED 0
INDEX 1

RELATION SHIP<-CHARTERER
RELCARD 10000
NBLOCKS 500
BLKFAC 20

COLUMN C<-NAME
COLCARD 10000
NIBLK 50
IBLKFAC 200
CLUSTERED 0
INDEX 1

COLUMN C*-COUNTRY
COLCARD 100
NIBLK 50
IBLKFAC 200
CLUSTERED 0
INDEX 1

CONNECTIONS
CONNECTION

REL1 COUNTRIES
C0L1 COUNTRYNAME
JSEI.1 0.3
RELN SHIPS
COIN S«-COUNTRY
JSELN 1.0

196-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

CONNECTION
REL1 SHIPS
C0L1 ID
JSEL1 1.0
RELN VOYAGES
COLN SID
JSELN 1.0

CONNECTION
REL1 SHIP-CHARTERER
COL1 C<-NAME
JSEL1 1.0
RELN VOYAGES
COLN CHARTERER
JSELN 1.0

CONNECTION
REL1 COUNTRIES
COL1 COUNTRYNAHE
JSEL1 1.0
RELN SHIP-CHARTERER
COLN C<-COUNTRY
JSELN 1.0

USAGE
TRANSACTION 1

TYPE SO FREQ 100 100 Deleted
SELECT COUNTRIES.POPULATION
FROM COUNTRIES(0.3)
WHERE COUNTRIES.COUNTRYNAME = "USA"

TRANSACTION 2
TYPE SQ FREQ
SELECT SHIPS.S<-COUNTRY
FROM SHIPS(0.3)
WHERE SHIPS.ID = 101

100 100 Deleted

TRANSACTION 3
TYPE JQ FREQ 20 20 Deleted
SELECT SHIPS.TD, COUNTRIES.POPULATION
FROM SHIPS(0.3). COUNTRIES(0.3)
WHERE SHIPS.S-COUNTRY = COUNTRIES.COUNTRYNAME AND

SHIPS.ID = 101

TRANSACTION 4
TYPE JQ FREQ 20 20 Deleted
SELECT SHIP-CHARTERER.C-NAME. COUNTRIES . POPULATION
FROM SHIP-CHARTFRER(0.3). COUNTRIES(0.5)
WHERE SH1P<-CHARTFRER.C<-C0UNTRY = COUNTRIES .COUNTRYNAME

SHIP-CHARTERER.C-NAME = "SMITH-TRADING-CO"

TRANSACTION 5
TYPE JQ FREQ 50 10 Deleted
SELECT VOYAGES.CHARTERER, VOYAGES.SID, SHIPS .S<-COUNTRY
FROM SHIPS(0.5), VOYAGES(0.5)
WHERE SHIPS.ID = VOYAGES.SID AND

VOYAGES.CHARTERER = "SMITH-TRADING-CO"

AND

TRANSACTION 6
TYPE
SELECT

FROM
WHERE

Deleted
VOYAGES.CHARTERER,

JQ FREQ 50 2
VOYAGES.SID. VOYAGES.VNUMBER
SHIP-CHARTERER.C-COUNTRY
V0YAGES(0.5). SHIP<-CHARTERER(0.5)
VOYAGES.CHARTERER = SHIP-CHARTERER .C«-NAME AND
VOYAGES.SID = 17

TRANSACTION 7
TYPE SU FREQ 5
UPDATE COUNTRIES
SET COUNTRIES.POPULATION =
WHERE COUNTRIES.COUNTRYNAME

35000000
' "KOREA"

TRANSACTION 8
TYPE SD FREQ 100 100 100
DELETE VOYAGFS
WHFRE VOYAGFS.SID = 51 AND

VOYAGFS. CHARTERER » "SMITH«-TRADING<-CO"

TRANSACTION 9
TYPE INS FREQ 10
INSERT INTO SHIPS:

<1051, "ANY-COUNTRY"

1000 1000

TRANSACTION 10
TYPE SD FREQ 50 1
DELETE SHIP-CHARTERER
WHERE SHIP-CHARTERER.C-COUNTRY = 'USSR"

TRANSACTION 11
TYPE JU FREQ
UPDATE SHIPS
SET SHIPS.S-COUNTRY "BIG-COUNTRY"

- 197

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

FROH SHIPS, COUNTRIES
WHERE SHIPS.S«-COUNTRY = COUNTRIES .COUNTRY<-NAME AND

COUNTRIES.POPULATION > 100000000 AND
SHIPS.ID - 100

198-

APPENDIX K. TUE PHYSICAL DATABASE DESIGN OPTIMIZER- AN IMPLEMENTATION

SCHEMA2X COUNTRIES 100

COUNTRYNAME POPULATION 20

100

SHIPS/1000

ID

1
1
1

SHIP-CHARTER 10000

S-COUNTRY 100 C-NAME C-COUNTRY

10000 100

X o / 1
X o / 1
X x / 1

VOYAGES 100000

VOYAGENO CHARTERER

1000 200 10000

1 X
1 X
X X

0
0
1

500

5000

Figure K-3: Situations 20, 21,22, and tlicir optimal solutions.

- 199-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OFITMIZER - AN IMPLEMENTATION

SCHEMA
RELATIONS

RELATION DEPTS
RELCARD 100
NBLOCKS 20
BLKFAC 5

COLUMN DEPTNO
COLCARD 100
NIBLK 1
IBLKFAC 200
CLUSTERED 0
INDEX 1

COLUMN LOCATION
COLCARD 20
NIBLK 1
IBLKFAC 200
CLUSTERED 0
INDEX 1

LATION EMPS
RELCARD 10000
NBLOCKS 1000
BLKFAC 10

COLUMN EMPNO
COLCARD 10000
NIBLK SO
IBLKFAC 200
CLUSTERED 0
INDEX 1

COLUMN DEPTNO
COLCARD 100
NIBLK 60
IBLKFAC 200
CLUSTERED 0
INDEX 1

COLUMN JOB
COLCARD 100
NIBLK 50
IBLKFAC 200
CLUSTERED 0
INDEX 1

COLUMN SALARY
COLCARD 10000
NIBLK 50
IBLKFAC 200
CLUSTERED 0
INDEX 1

RELATION
RELCARD
NBLOCKS
BLKFAC

CHILDREN
20000
1000
20

COLUMN EMPNO
COLCARD 10000
NIBLK 100
IBLKFAC 200
CLUSTERED 0
INDEX 1

COLUMN NAME
COLCARD 20000
NIBLK 100
IBLKFAC 200
CLUSTERED 0
INDEX 1

COLUMN
COLCARD
NIBLK
IBLKFAC
CI.USTERFD
INDEX

AGE
20
100
200
0
1

RELATION
RELCARD
NBLOCKS
BLKFAC

FMP«-PROJ
20000
500
40

COLUMN EMPNO
COLCARD 10000
NTBLK 100
IBLKFAC 200
CLUSTERED 0
INDEX 1

COLUMN PROJNO

200-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

COLCARD 100
NIBLK 100
IBLKFAC 200
CLUSTERED 0
INDEX 1

COLUMN PERCENT «-TIME
COLCARD 100
NIBLK 100
IBLKFAC 200
CLUSTERED 0
INDEX 1

CONNECTIONS
CONNECTION

REL1 DEPTS
COL1 DEPTNO
JSEL1 1.0
RELN EMPS
COLN DEPTNO
JSELN 1.0

CONNECTION
REL1 EMPS
C0L1 EMPNO
JSEL1 1.0
RELN CHILDREN
COLN EMPNO
JSELN 1.0

CONNECTION
REL1 EMPS
COL1 EMPNO
JSEL1 1.0
RELN EMP<-PROJ
COLN EMPNO
JSELN 1.0

USAGE
TRANSACTION 1

TYPE SO FREQ 100
SELECT DEPTS.LOCATION
FROM DEPTS
WHERE DEPTS.DEPTNO = 15

100 Deleted

TRANSACTION 2
TYPE AQ FREQ 20 20 Deleted
SELECT FMPS.DEPTNO, EMPS.JOB, AVG(EMPS.SALARY)
FROM FMPS(0.5)
WHERE FMPS.JOB = "WELDER"
GROUP BY FMPS.DEPTNO

TRANSACTION 3
TYPE SO FREQ 100 100 Deleted
SEIECT FMP<-PROJ. EMPNO, EMP-PROJ. PROJNO, EMP*-PROJ. PERCENT«-TIME
FROM FMP<-PROJ
WHERE EMP«-PROJ. EMPNO = 293

TRANSACTION 4
TYPE JQ FREQ 20 6 Deleted
SELECT FMPS.DEPTNO, EMPS.EMPNO, EMP<-PROJ. PROJNO
FROM EMPS(0.3), EMP<-PROJ(0 . 3)
WHERE EMPS.FMPNO ■= EMP«-PROJ. EMPNO AND

EMP«-PROJ. PROJNO = 11

TRANSACTION
TYPE
SELECT
FROM
WHERE

5
JQ FREQ 20 200 Deleted
DEPTS.LOCATION
DEPTS(0.5j, EMPS(0.3)
DEPTS.DEPTNO = EMPS.DEPTNO AND
EMPS.EMPNO = 55

TRANSACTION 6
TYPE JQ FREQ 10 10
SELECT EMPS.DEPTNO. EMPS.EMPNO
FROM FMPS(0.3), CHI IDRFN(0.2)
WHERF FMPS.FMPNO = CHILDREN.EMPNO AND

FMPS.JOB = "WELDFR" AND
CHILDREN.AGE < 10

Deleted

TRANSACTION 7
TYPE SU FREQ 50 50 50
UPDATF EMPS
SET EMPS.SALARY = EMPS.SALARY + 1000
WHERE EMPS.JOB = "WELDER"

TRANSACTION
TYPE
UPDATE
SET
FROM
WHERE

JU FREQ 10 10 10
EMP<-PROJ
FMP*PnOJ.PERCFNT<-TIME = 30
FMP^PROJ, FMPS(0.3)
FMPS.FMPNO = FMP-PROJ.EMPNO AND
FMPS.DEPTNO = 5 AND

201-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER-AN IMPLEMENTATION

EMP«-PROJ.PROJN0 =■ 17

SACTION 9
TYPE SD FREQ 10
DELETE EMPS
WHERE EHPS.DEPTHO =■ 3

TRANSACTION 10
TYPE SD FREQ 10 10 10
DELETE DEPTS
WHERE DEPTS.DEPTNO =■ 3

TRANSACTION 11
TYPE JD FREQ 5 2 2
DELETE EMPS
FROM EMPS, EMP<-PROJ(0.3)
WHERE EMPS.EMPNO = EMP<-PROJ. EMPNO AND

EMP«-PROJ.PROJNO = 5

TRANSACTION 12
TYPE SD FREQ 10 100 100
DELETE CHILDREN
WHERE CHILDREN.EMPNO » 175

-202-

APPENDIX K. TUE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

DEPTS 100 SCHEMA3X

DEPTNO

100
A

LOCATION 20
20

1
1
1

EMPS

X
X
X
10000

DEPTNO EMPNO JOB SALARY 1000
100 10000

1 X
1 X
1 X

EMP-PROJ 20000

EMPNO PROJNO PERCENT-TIME
10000 Q 100

20000 Q
0

1
1
1

100 X
X
X

EMPNO NAME AGE 1000
10000

1
1
1

200

X
X
X

20

X
X
X

Figure K-4: Situations 30, 31, 32, and their optimal solutions.

-203-

APPENDIX K. TUE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

SCHEMA
RELATIONS

RELATION PORTS
RELCARD 1000
NBLOCKS 200
BLKFAC 5

COLUMN P<-NAME
COLCARD 1000
NIBLK 10
IBLKFAC 100
CLUSTERED 0
INDEX 1

COLUMN NUM<-SHIPS
COLCARD 20
NIBLK 10
IBLKFAC 100
CLUSTERED 0
INDEX 1

COLUMN NUM-WHOUSE
COLCARD 50 !MAX 50 WAREHOUSES/PORT!
NIBLK 10
IBLKFAC 100
CLUSTERED 0
INDEX 1

RELATION
RELCARD
NBLOCKS
BLKFAC

DOCKS
5000
1000
5

COLUMN P<-NAME
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

COLUMN DOCKNO
COLCARD

NIBLK
IBLKFAC
CLUSTERED
INDEX

1000
50
100
0
1

100

50
100
0
1

1DOCK-NUMBER DOES NOT HAVE TO BE NUMBERED
CONTIGUOUSLY!

COLUMN SHIP-ID
COLCARD 3000 !NOT EVERY DOCK HAS A SHIP ANCHORED!
NIBLK 50
IBLKFAC 100
CLUSTERED 0
INDEX 1

RELATION
RELCARD
NBLOCKS
BLKFAC

WAREHOUSES
10000 !10 WAREHOUSED/PORT ON THE AVERAGE!
2000

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

P<-NAME
1000
100
100
0
1

COLUMN WHOUSENO
COLCARD 200
NIBLK 100
IBLKFAC 100
CLUSTERED 0
INDEX 1

COLUMN CARGOCLASS
COLCARD 100
NIBIK 100
IBIKFAC 100
CLUSTERED 0
INDEX 1

RELATION CARGOCLASSES
RELCARD 100
NBLOCKS 50
BLKFAC 2

COLUMN CARGOCLASS
COLCARD 100
NIBLK 1
IBLKFAC 100
CIUSTFRED 0
INDEX 1

204-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

COLUMN W-UNIT
COLCARD 60
NIBLK 1
IBLKFAC 100
CLUSTERED 0
INDEX 1

CONNECTIONS
CONNECTION

REL1
COL1
JSEL1
RELN
COLN
JSELN

PORTS
P-NAME
1.0
DOCKS
P«-NAME
1.0

CONNECTION
REL1
COL1
JSEL1
RELN
COLN
JSELN

PORTS
P-NAME
1.0
WARENOUSES
P-NAME
1.0

CONNECTION
REL1
COL1
JSEL1
RELN
COLN
JSELN

CARGOCLASSES
CARGOCLASS
1.0
WAREHOUSES
CARGOCLASS
1.0

USAGE
TRANSACTION

TYPE
SELECT
FROH
WHERE

1
SQ FREQ
DOCKS. SHI P-ID
DOCKS
DOCKS. P«-NAME =
DOCKS.DOCKNO -

100

"P0RT«-A"
3

SO

AND

Deleted

TRANSACTION 2
TYPE SQ FREQ
SELECT DOCKS.P-NAME,
FROM DOCKS
WHERE DOCKS. SHIP-ID

100 50
DOCKS.DOCKNO

101

Deleted

TRANSACTION
TYPE
SELECT
FROM
WHERE

3
SQ FREQ 100
PORTS. NUM-SHI PS
PORTS
PORTS. P-NAME = "PORT-A"

SO Deleted

TRANSACTION 4
TYPE
SELECT

FROM
WHERE

JQ FREQ 20 10 Deleted
PORTS. P-NAME, PORTS.NUM-WHOUSE, WAREHOUSE .WHOUSENO,
WAREHOUSES.CARGOCLASS
PORTS(0.5). WARFHOUSES(l)
PORTS.P-NAME = WAREHOUSES.P-NAME
PORTS.P-NAME = "PORT-A"

AND

TRANSACTION
TYPE
SELECT
FROM
WHERE

5
JQ FREQ 20 2 Deleted
WAREHOUSES.P-NAME, WAREHOUSES.WHOUSENO
WAREHOUSES(0.5). CARGOCLASSES(0.3)
WAREHOUSES.CARGOCLASS » CARGOCLASSES.CARGOCLASS
CARGOCLASSES.W-UNIT = "GALLON"

AND

TRANSACTION 6
TYPE SU FREQ 100 CO 50
UPDATE PORTS
SET PORTS.NUM-SHIPS = PORTS.NUM-SHIPS + 1
WHERE PORTS.P-NAME = "PORT-A"

TRANSACTION 7
TYPE SU FREQ 1 50 50
UPDATE PORTS
SET PORTS.NUM-WHOUSE = PORTS.NUM-WHOUSE
WHERE PORTS.P-NAME = "PORT-A"

+ 1

TRANSACTION 8
TYPE SQ FREQ 50 5 Deleted
SELECT WAREHOUSES.P-NAME, WAREHOUSES.WHOUSENO
FROM WAREHOUSES
WHERE WAREHOUSES.CARGOCLASS = "EXPLOSIVES"

TRANSACTION 9
TYPE JQ FREQ 20 20 Deleted
SELECT PORTS.P-NAME, PORTS.NUM-SHIPS, DOCKS.DOCKNO, DOCKS.SHIP
FROM P0RTS(0.5). DOCKS(l)
WHERE PORTS.P-NAME = DOCKS.P-NAME AND

PORTS.P-NAME = "PORT-A"

-ID

-205-

APPENDIX K. THE PHYSICAL DATABASE DESIGN 0PTIM1ZER-AN IMPLEMENTATION

TRANSACTION 10
TYPE SU FREQ 100 100
UPDATE DOCKS
SET DOCKS.SHIP«-ID - 101
WHERE DOCKS. P«-NAME « "PORTt-A"

DOCKS.DOCKNO - 3
AND

100

TRANSACTION 11
TYPE INS FREQ 1
INSERT INTO CARGOCLASSES:

<"FROZEN<-FISH". "TON">

30 30

TRANSACTION 12
TYPE INS FREQ 1
INSERT INTO DOCKS:

<"PORT«-A", 7, 0>

20

TRANSACTION 13
TYPE INS FREQ 1 20
INSERT INTO WAREHOUSES:

<"PORT<-A", 15, "FROZEN«-FISH"

20

20

-206-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

SCHEMA4X

PORTS 10QO

P-NAME NUM-SHIPS NUM-WHOUSE 200

20 50

X x
X x
X WAREHOUSESX 10000

WHOUSENO CARGOCLASS

A

1000 0 200 x
0 x

DOCKS X 5000 X

P-NAME DOCKNO SHIP-ID 1000

1000 100 3000

1
1
1

X
X
X

0
0

CARGOCLÄSSES

50 W-UNIT

100 1
1
X

100
:vki

CARGOCLASS

100 50

X 1
X 1
X X

Figure K-5: Situations 40,41,42, and their optimal solutions.

-207 -

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

SCHEMA
RELATIONS

RELATION Rl
RELCARD 200
NBLOCKS 40
BLKFAC S

COLUMN Cl
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

200
4
50
0
1

COLUMN C2
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

170
4
SO
0
1

RELATION R2
RELCARD 10000
NBLOCKS 2000
BLKFAC 5

COLUMN Cl
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

10000
200
SO
0
1

COLUMN C2
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

200
200
50
0
1

COLUMN C3
COICARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

300
200
SO
0
1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

C4
60
200
50
0
1

RELATION
RELCARD
NBLOCKS
BLKFAC

R3
300
60
5

COLUMN Cl
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

300
6
50
0
1

COLUMN C2
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

100
6
50
0
1

RELATION
RELCARD
NBLOCKS
BLKFAC

R4
60
12
S

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

Cl
60
2
50
0
1

COLUMN
COLCARD
NTBLK
IBLKFAC
CLUSTERED
INDEX

C2
60
2
50
0
1

RELATION R5

-208-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

RELCARD 200000
NBLOCKS 40000
BLKFAC 5

COLUMN Cl
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

COLUMN C2
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

10000
4000
SO
0
1

100
4000
SO
0
1

CONNECTIONS
CONNECTION

REL1
C0L1
JSEL1
RELN
COLN
JSELN

Rl
Cl
1.0
R2
C2
1.0

CONNECTION
REL1
COL1
JSEL1
RELN
COLN
JSELN

CONNECTION
REL1
COL1
JSEL1
RELN
COLN
JSELN

R3
Cl
1.0
R2
C3
1.0

R2
Cl
1.0
R5
Cl
1.0

CONNECTION
REL1
COL1
JSEL1
RELN
COLN
JSELN

R4
Cl
1.0
R2
C4
1.0

USAGE
TRANSACTION 1

TYPE
SELECT
FROM
WHERE

JQ FREQ
R1.C2. R2.C2
Rl, R2
R1.C1 = R2.C2
R1.C2 = 100
R2.C3 = "NAME"

20
R2.C3,

100
R2.C4

Deleted

AND
AND

TRANSACTION
TYPE
SELECT
FROM
WHERE

2
JQ FREQ 20
R2.C1, R2.C4, R3.C1.
R2, R3
R2.C3 = R3.C1 AND
R2.C4 = "KOREA" AND
R3.C2 = 40

40
R3.C2

Deleted

TRANSACTION
TYPE
SELECT
FROM
WHERE

3
JQ FREQ
R2.C1, R2.C4
R2, R4
R2.C4 =
R2.C1 =
R2.C2 =
R4.C2 =

20
R4.C2

R4.C1 AND
101 AND
"TANKER"AND
10000000

10 Deleted

TRANSACTION
TYPE
SELECT
FROM
WHERE

4
JQ FREQ 20 60
R2.C1. R2.C3, R2.C4. R5.C2
R2, R5
R2.C1 - R5.C1 AND
R2.C4 = "USA" AND
R2.C3 = "AMERICAN<-OIL*-CO"

Deleted

TRANSACTION
TYPE
UPDATE
SET
FROM
WHERE

5
JU
R2
R2
R2
R2

C3 =
R5

Cl =

FREQ

"USA"

R2.C3

2.5 2.5

R5.C1 AND
"BRITAIN" AND

-209-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

R5.C2 > 101

TRANSACTION
TYPE
DELETE
FROM
WHERE

6
JD FREQ 5
R4
R4. R2
R4.C1 * R2.C4 AND
R2.C1 = 101 AND
R2.C2 =■ "TANKER"

TRANSACTION
TYPE
DELETE
WHERE

7
SD
RS
R5.C2

FREQ 20

> 50

TRANSACTION
TYPE
UPDATE
SET
WHERE

8
SU
R2
R2.C2
R2.C4

FREQ 20

= "TANKER"
> "USA"

TRANSACTION
TYPE
DELETE
WHERE

9
SD
R2
R2.C2

FREQ 20

= "TANKER"

TRANSACTION
TYPE
INSERT

10
INS FREQ 20
INTO Rl:
<"TANKER", 50>

TRANSACTION
TYPE
DELETE
WHERE

11
SD
R3
R3.C2

FREQ 20

> 100

TRANSACTION
TYPE
UPDATE
SET
WHERE

12
SU
R4
R4.C1
R4.C2

FREQ 20

= "USA"
= 200000000

10 10

0.01 0.01

120 120

80 80

210-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

SCHEMA5X R1 200

R3 300

R5 200000

C1 C2

60
0

40000 0
10000

X
1
1

100
0
X
X

60
1
1
1

60

12

Figure K-6: Situations 50,51,52, and thcir optimal solutions.

-211

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPOMIZER - AN IMPLEMENTATION

SCHEMA
RELATIONS

RELATION Rl
RELCARD 1000
NBLOCKS 200
BLKFAC 5

COLUMN Cl
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

1000
10
100
0
1

COLUMN C2
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

20
10
100
0
1

COLUMN C3
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

50 !MAX 50 WAREHOUSES/PORT!
10
100
0
1

RELATION R2
RELCARD 5000
NBLOCKS 1000
BLKFAC 5

COLUMN Cl
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

1000
50
100
0
1

COLUMN C2
COLCARD

NIBLK
IBLKFAC
CLUSTERED
INDEX

100 IDOCK-NUMBER DOES NOT HAVE TO BE NUMBERED
CONTIGUOUSLY!

50
100
0
1

COLUMN C3
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

3000 !NOT EVERY DOCK HAS A SHIP ANCHORED!
50
100
0
1

RELATION R3
RELCARD 10000
NBLOCKS 2000
BLKFAC 5

110 WAREHOUSED/PORT ON THE AVERAGE!

COLUMN Cl
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

1000
100
100
0
1

COLUMN C2
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

200
100
100
0
1

COLUMN C3
COLCARD
NIBLK
IBIKFAC
CLUSTERED
INDEX

100
too
100
0
1

RELATION R4
RELCARD 100
NBLOCKS 50
BLKFAC 2

COLUMN Cl
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

100
1
100
0
1

212-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

COLUMN C2
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

SO
1
100
0
1

CONNECTIONS
CONNECTION

REL1
C0L1
JSEL1
RELN
COLN
JSELN

Rl
Cl
1.0
R2
Cl
1.0

CONNECTION
REL1
C0L1
JSEL1
RELN
COLN
JSELN

Rl
Cl
1.0
R3
Cl
1.0

CONNECTION
REL1
COL1
JSEL1
RELN
COLN
JSELN

R4
Cl
1.0
R3
C3
1.0

USAGE
TRANSACTION

TYPE
SELECT
FROM
WHERE

1
JQ FREQ 100
R1.C1, R1.C2, R2.C2
Rl(0.5), R2(0.5)
R1.C1 = R2.C1 AND
R1.C3 = "ANY" AND
R2.C3 - "ANY" AND
R1.C2 > "ANY"

300 Deleted

TRANSACTION 2
TYPE JQ FREQ 100
SELECT R1.C3, R2.C1, R2.C3
FROM R1(0.5), R2(0.5)
WHERE Rl.CI = R2.C1 AND

R1.C2 = "ANY" AND
R2.C2 = "ANY"

500 Deleted

TRANSACTION 3
TYPE
SELECT
FROM
WHERE

JQ FREQ
R1.C2, R3.C1
Rl 0.5)
Rl.CI =
R1.C2 =
R3.C2 =
R3.C3 =

100
R3.C2

R3(0.5)
R3.C1 AND

3000 Deleted

"ANY"
"ANY"
"ANY"

AND
AND

TRANSACTION 4
TYPE
SELECT
FROM
WHERE

JQ FREQ
R1.C3, Rl.CI.
Rl(0.5), R3(0.5)
Rl.CI = R3.C1

100
R3.C3

R1.C3 =
R1.C2 =
R3.C2 =

2000 Deleted

"ANY"
"ANY"
"ANY"

AND
AND
AND

TRANSACTION 5
TYPE JQ FREQ 100
SELECT R3.C2, R4.C1, R4.C2
FROM R3(0.5), R4(0.5)
WHERE R3.C3 = R4.C1 AND

R3.C1 = "ANY" AND
R3.C2 = "ANY" AND
R4.C2 > "ANY"

5000 Deleted

TRANSACTION
TYPE
SELECT
FROM
WHERE

6
JQ FREQ 100
R3.C1. R3.C3, R4.C2
R3(0.5), R4(0.5)
R3.C3 = R4.C1 AND
R3.C1 > "ANY"

5 Deleted

TRANSACTION
TYPE
SELECT
FROM
WHERE

7
AQ
R3.C2
R3
R3.C1 = "ANY

FREQ 100
AVG(R3.C3)

1000 Deleted

GROUP BY R3.C2

-213

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER- AN IMPLEMENTATION

TRANSACTION 8
TYPE SQ FREQ 100
SELECT R1.C2
FROM Rl
WHERE R1.C3 - "ANY" AND

R1.C1 - "ANY"

TRANSACTION 9
TYPE SQ FREQ 100
SELECT R2.C3
FROM R2
WHERE R2.C1 - "ANY" AND

R2.C2 =■ "ANY"

TRANSACTION 10
TYPE JU FREQ 100
UPDATE R3
SET R3.C1 - "ANY"
FROM R3, R4
WHERE R3.C3 » R4.C1 AND

R3.C2 * "ANY" AND
R4.C2 - "ANY"

TRANSACTION 11
TYPE JU FREQ 100
UPDATE R3
SET R3.C2 > "ANY"
FROM R3. Rl
WHERE R3.C1 - R1.C1 AND

R1.C3 - "ANY"

TRANSACTION 12
TYPE SD FREQ 100
DELETE R2
WHERE R2.C2 - "ANY"

TRANSACTION 13
TYPE SD FREQ 100
DELETE Rl
WHERE R1.C3 - "ANY"

TRANSACTION 14
TYPE SD FREQ 100
DELETE R3
WHERE R3.C2 « "ANY"

TRANSACTION 15
TYPE INS FREQ 100
INSERT INTO R4:

<"ANY", "ANY">

5000 Deleted

5000 Deleted

100 100

10 10

100 100

500 500

200 200

5000 5000

214-

APPENDIX K. TIIE PHYSICAL DATABASE DESIGN OPTIMIZER-AN IMPLEMENTATION

SCHEMA6X
R1 1000

2000

50
50 100

1 X
1 X
1 X

Figure K-7: Situations 60,61,62, and their optimal solutions.

-215-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

1512 WORDS - 2560 BYTES/ BLOCKI
SCHEMA

RELATIONS
RELATION

RELCARD
NBLOCKS
BLKFAC

FUELTYPES
8
1
173

115 BYTES 1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

FUELTYPE
8
1
256
0
1

15 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

PRICE
8
1
256
0
1

15 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

UNIT
4
1
256
0
1

15 BYTES!

RELATION
RELCARD
NBLOCKS
BLKFAC

SHIPTYPES
15
8
2

11005 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

SHIPTYPE
15
1
256
0
1

15 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

DESCRIPTION
15
8
2
0
1

11000 BYTES!

RELATION
RELCARD
NBLOCKS
BLKFAC

SHIPCLASSES
29
1
38

!66 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

SHIPTYPE
15
1
256
0
1

15 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

SHIPCLASS
29
1
320
0
1

13 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

FUELTYPE
8
1
256
0
1

15 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

WCAP
29
1
284
0
1

16 BYTES!

COLUMN
COLCARD
NIBLK
IBIKFAC
CLUSTERED
INDEX

VCAP
29
1
284
0
1

16 BYTES!

COLUMN CRFWSZ !3 BYTES!

-216-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

COLCÄRD
NIBLK
IBLKFAC
CLUSTERED
INDEX

29
1 '
320
0
1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

LIFEBOATCAP
29
1
256
0
1

15 BYTES 1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

FUELCAP
29
1
256
0
1

15 8YTESI

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

CRUISESPD
29
1
320
0
1

13 BYTES 1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

MAXSPD
29
1
320
0
1

13 BYTES 1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

FUELCONSATMAX
29
1
320
0
1

13 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

FUELCONSATCRUISING 13 BYTES!
29
1
320
0
1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

BEAM
29
1
320
0
1

13 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

LENGTH
29
1
284
0
1

!4 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

MAXDRAFT
29
1
320
0
1

!3 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

DEADWET'jU
29
1
284
0
1

16 BYTES!

RELATION
REICARD
NBLOCKS
BLKFAC

SHIPS
2870
111
26

198 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

SHIPNAME
2870
35
82
0
1

!26 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC

SHIPID
2870
12
256

15 BYTES!

-217-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

CLUSTERED
INDEX

0
1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

SHIPCLASS
29
9
320
0
1

!3 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

IRCS
2870
13
232
0
1

16 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

HULLNUMBER
2870
11
284
0
1

14 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

OWNER
1000
40
73
0
1

130 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

COUNTRYOFREGISTRY 12 BYTES!
50
8
365
0
1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

LATITUDE
2870
11
284
0
1

14 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

NORS
2
7
426
0
1

11 BYTE!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

LONGITUDE
2870
11
284
0
1

!5 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

EORW
2
7
426
0
1

11 BYTE!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

DATEREPORTED
30
13
232
0
1

16 BYTES!

COLUMN
COLCARD
NIBLK
IßlKFAC
CLUSTERED
INDEX

TIMEREPORTED
975
11
284
0
1

!4 BYTES!
1 < 24 X 60!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

ATPORTORSEA
2
7
426
0
1

11 BYTE!

RELATION
RELCARD
NBLOCKS
BLKFAC

COUNTRIES
234
4
62

141 BYTES!

218-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER- AN IMPLEMENTATION

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

COUNTRYNAME
234
4
73
0
1

130 BYTESI

COLUMN
COLCARD
NIBLK
IOLKFAC
CLUSTERED
INDEX

COUNTRYABB
234
1
365
0
1

12 BYTESI

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

POPULATION
234
2
182
0
1

19 BYTESI

RELATION
RELCARD
NBLOCKS
BLKFAC

SHIPCLASSCARGOCLASS 121 BYTES!
290 !10 CARGOCLASSES/SHIPCLASSI
3
121

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

SHIPCLASS
29
1
320
0
1

13 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

CARGOCLASS
175
1
232
0
1

16 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

MAXVOLUME
175
1
232
0
1

16 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

MAXWEIGHT
125
1
232
0
1

16 BYTES!

RELATION
RELCARD
NBLOCKS
BLKFAC

CARGOCLASSES
25
1
106

124 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

CARGOCLASS
25
1
232
0
1

16 BYTESI

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

WUNIT
20
1
170
0
1

19 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

VUNIT
23
1
170
0
1

19 BYTES!

RELATION
RELCARD
NBLOCKS
BLKFAC

VOYAGES
8610
129
67

138 BYTES!
13 MOST RECENT VOYAGES/SHIP!

COLUMN
COLCARD
NIBLK

SHIPID
2870
34

!5 BYTESI

-219

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

IBLKFAC
CLUSTERED
INDEX

256
0 *
1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTEREO
INDEX

VOYAGENUMBER 13 BYTES!
350 !MAX 350 VOYAGES/SHIPI
27
320
0
1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

CHARTERER 130 BYTESI
750
102
85
0
1

MCOLUMN SHIPID«-VOYAGENUMBER 18 BYTES!
COLCARD 8610
NIBLK 44
IBLKFAC 196
COMPONENTS

SHIPID
VOYAGENUMBER

CLUSTERED 0
INDEX 1

TION
RELCARD
NBLOCKS
BLKFAC

LEGS 117 BYTESI
17220 12 LEGS/VOYAGE!
115
150

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

SHIPID !5 BYTESI
2870
68
256
0
1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

VOYAGENUMBER 13 BYTES!
350
54
320
0
1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

LEGNUMBER 13 BYTESI
10
54
320
0
1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

SOURCESTOP 13 BYTES!
11 10..10!
54
320
0
1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

DESTINATIONSTOP 13 BYTESI
11
54
320
0
1

MCOLUMN SHIPID<V:)YAGENUMBER !8 BYTESI
COLCARD 8610
NIBLK 88
IBLKFAC 196
COMPONENTS

SHIPID
VOYAGENUMBER

CLUSTERED 0
INDEX 1

MCOLUMN SHIPID<-VOYAGENUMBER«-LEGNUMBER !tl BYTES!
COLCARD 17220
NIBLK 108
IBLKFAC 160
COMPONENTS

SHIPID
VOYAGENUMBER
LEGNUMBER

CLUSTERED 0
INDEX 1

MCOLUMN
COLCARD

SHTPTD«-VOYAGENUMBER«-SOURCESTOP 111 BYTES
17220

-220-

APPENDIX K. TUE PHYSICAL DATABASE DESIGN OPTIMIZER- AN IMPLEMENTATION

NIBLK 108
IBLKFAC 160
COMPONENTS

SHIPID
VOYAGENUMBER
SOURCESTOP

CLUSTERED 0
INDEX 1

HCOLUMN SHIPID«-VOYAGENUMBER«-DESTINATIONSTOP 111
COLCARD 17220
NIBLK 108
IBLKFAC 160
COMPONENTS

SHIPID
VOYAGENUMBER
DESTINATIONSTOP

CLUSTERED 0
INDEX 1

BYTES!

kTION
RELCARD
NBLOCKS
BLKFAC

STOPS 152 BYTES 1
25830
528
49

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

SHIPID 15 BYTES!
2870
101
256
0
1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

VOYAGENUMBER 13 BYTES!
350
81
320
0
1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

STOPNUMBER 13 BYTES!
11
81
320
0
1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

PORTNAME 118 BYTES!
100
233
111
0
1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

ARRIVALDATE !6 BYTES!
365 1KEEPS THE RECORD FOR 1
112
232
0
1

YEAR!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

ARRIVALTIME !4 BYTES!
1000 1< 24 X 60!
91
284
0
1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

DEPARTUREDATE 16 BYTES!
365
112
232
0
1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

DFPARTURETIME 14 BYTES!
1000 !< 24 X 60!
91
284
0
1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

DOCKNUMBER !3 BYTES!
15
81
320
0
1

MCOLUMN
COICARD
NIBLK

SIIIPID«-VOYAGENUMBER !8 BYTES!
8610
132

-221 -

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPOMIZER - AN IMPLEMENTATION

IBLKFAC 196
COMPONENTS

SHIPID
VOYAGENUHBER

CLUSTERED 0
INDEX 1

MCOLUMN SHIPID<-VOYAGENUMBER«-STOPNUMBER Hl BYTES!
COLCARD 25830
NIBLK 162
IBLKFAC 160
COMPONENTS

SHIPID
VOYAGENUMBER
STOPNUMBER

CLUSTERED 0
INDEX 1

MCOLUMN PORTNAME«-DOCKNUMBER 121 BYTES!
COLCARD 350
NIBLK 264
IBLKFAC 98
COMPONENTS

PORTNAME
DOCKNUMBER

CLUSTERED 0
INDEX 1

RELATION DOCKS !33 BYTES!
RELCARD 500 15 DOCKS/PORT!
NBLOCKS 7
BLKFAC 77

COLUMN PORTNAME !18 BYTES!
COLCARD 100
NI8LK 5
IBLKFAC 111
CLUSTERED 0
INDEX 1

COLUMN DOCKNUMBER !3 BYTES!
COLCARD 15 !MAX DOCKNUMBER USED!
NIBLK 2
IBLKFAC 320
CLUSTERED 0
INDEX 1

COLUMN SHIPID !5 BYTES!
COLCARD 320
NIBLK 2
IBLKFAC 256
CLUSTERED 0
INDEX 1

COLUMN MAXDRAFT !3 BYTES!
COLCARD 200
NIBLK 2
IBLKFAC 320
CLUSTERED 0
INDEX 1

COLUMN MAXLENGTH 13 BYTES!
COLCARD 200
NIBLK 2
IBLKFAC 320
CLUSTERED 0
INDEX 1

COLUMN OCCUPIEDORNOTOCCUPIED 11 BYTE!
COLCARD 2
NIBLK 2
IBLKFAC 426
CLUSTERED 0
INDEX 1

MCOLUMN PORTNAME«-DOCKNUMBER 121 BYTES!
COLCARD 500
NIBLK 5
IBLKFAC 98
COMPONENTS

PORTNAME
DOCKNUMBER

CLUSTERED 0
INDEX 1

RELATION
RELCARD
NBLOCKS

PORTS
100
2

143 BYTES!

-222-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

BLKFAC 53 .

ms

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

PORTNAME
100
1
111
0
1

118 BYTES 1

»

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

COUNTRY
70
1
365
0
1

12 BYTES 1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

LATITUDE
100
1
284
0
1

14 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

NORS
2
1
426
0
1

!l BYTE!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

LONGITUDE
100
1
284
0
1

14 BYTES 1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

EORW
2
1
426
0
1

11 BYTE!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

MAXDRAFT
70
1
320
0
1

13 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
ClUSTERED
INDEX

NUMBEROFDOCKS
15
1
320
0
1

13 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

MAXLENGTH
70
1
320
0
1

!3 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

NUMBEROFSHIPSATPORT !3 BYTES!
15
1
320
0
1

RELATION
REICARD
NBIOCKS
Bl KFAC

WAREHOUSES
1000
19
54

!47 BYTES!
!10 WAREHOUSES/PORT!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

PORTNAME
100
10
111
0
1

!18 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

WAREHOUSENUMBER
20
4
284
0
1

!4 BYTES!
!MAX 20 WAREHOUSES/P

COLUMN CARGOCLASS !6 BYTES!

-223-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPflMIZER - AN IMPLEMENTATION

COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

25
S
232
0
1

USEDORUNUSED II BYTEI
2
3
426
0
1

QUANTITY!«IGHT 16 BYTES 1
100
5
213
0
1

QUANTITYVOLUME 16 BYTES I
100
S
213
0
1

RELATION
RELCARD
NBLOCKS
BLKFAC

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

COLUMN
COLCARD
NIRLK
IBLKFAC
CLUSTERED
INDEX

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

LOADEDUNLOADEDCARGOES !30 BYTES!
77490 !3 CARGOES/STOP I
912
85

SHIPID
2870
303
256
0
1

VOYAGENUMBER
350
243
320
0
1

STOPNUMBER
11
243
320
0
1

CARGOCLASS
25
335
232
0
1

LORU
2
182
426
0
1

QTYWGHT
10500
335
232
0
1

QTYVOL
9400
335
232
0
1

15 BYTES I

!3 BYTES!

13 BYTES!

!6 BYTES!

II BYTEI

16 BYTES I

16 BYTES!

MCOLUMN
COLCARD
NIBLK
IBLKFAC
COMPONENTS

SHIPID
VOYAGENUMBER
STOPNUMBER

CLUSTERED 0
INDEX 1

SHIPID«-VOYAGENUMBER«-STOPNUMBER 111 BYTES!
25830
485
160

-224

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

RELATION
RELCARD
NBLOCKS
BLKFAC

CARGOESONBOARD
12000
137
SB

!29 BYTES 1
15 CARGOES/LEG FOR CURRE

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

SHIPID
2870
47
256
0
1

15 BYTES 1

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

VOYAGENUMBER
350
38
320
0
1

13 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

LEGNUMBER
10
38
320
0
1

13 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

CARGOCLASS
25
52
232
0
1

16 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

QUANTITYWEIGHT
4500
52
232
0
1

16 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

QUANTITYVOLUME
3700
52
232
0
1

16 BYTES!

MCOLUMN SHIPID<-VOYAGENUMBER<-LEGNUMBER 111 BYTES 1
COLCARD 2400
NIBLK 75
IBLKFAC 160
COMPONENTS

SHIPID
VOYAGENUMBER
LEGNUMBER

CLUSTERED 0
INDEX 1

RELATION
RELCARD
NBLOCKS
BLKFAC

TRACKS
4800
65
37

168 BYTES!
IONLY CURRENT VOYAGE!
!AVG 2 REPORT/LEG!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

SHIPID
1200
10
256
0
1

15 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

VOYAGENUMBER
75
8
320
0
1

!3 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED
INDEX

LEGNUMBER
10
8
320
0
1

13 BYTES!

COLUMN
COLCARD
NIBLK
IBLKFAC
CLUSTERED

DATE
90
11
232
0

16 BYTES!
!MAX 90 DAYS/LEG!

-225-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

INDEX'

COLUMN TIME 14 BYTESI
COLCARD 1060
NIBLK 9
IBLKFAC 284
CLUSTERED 0
INDEX 1

COLUMN COURSE 13 BYTESI
COLCARD 951
NIBLK 8
IBLKFAC 320
CLUSTERED 0
INDEX 1

COLUMN SPEED 13 BYTESI
COLCARD 150
NIBLK 8
IBLKFAC 320
CLUSTERED 0
INDEX 1

COLUMN LATITUDE 14 BYTESI
COLCARD 2400
NIBLK 9
IBLKFAC 284
CLUSTERED 0
INDEX 1

COLUMN NORS 11 BYTE!
COLCARD 2
NIBLK 6
IBLKFAC 426
CLUSTERED 0
INDEX 1

COLUMN LONGITUDE 15 BYTESI
COLCARD 2400
NIBLK 11
IBLKFAC 232
CLUSTERED 0
INDEX 1

COLUMN EORW 11 BYTEI
COLCARD 2
NIBLK 6
IBLKFAC 426
CLUSTERED 0
INDEX 1

COLUMN REPORTER 130 BYTES!
COLCARD 100
NIBLK 33
IBLKFAC 73
CLUSTERED 0
INDEX 1

MCOLUMN SHIPID<-VOYAGENUMBER«-LEGNUMBER !11 BYTES!
COLCARD 2000
NIBLK 15
IBLKFAC 160
COMPONENTS

SHIPID
VOYAGENUMBER
LEGNUMBER

CLUSTERED 0
INDEX 1

CONNECTIONS
•

CONNECTION III
REL1 FUELTYPES
COL1 FUELTYPE
JSEL1 t.O
RELN SHIPCLASSES
COIN FUELTYPE
JSELN 1.0

CONNECTION 121
REL1 SHIPTYPES
COL1 SHIPTYPE
JSEL1 1.0
RELN SHIPCLASSES
COLN SHIPTYPE
JSELN 1.0

CONNECTION 131
REL1 SHIPCLASSES
COL1 SHIPCLASS
JSEL1 1.0
RELN SHIPCLASSCARGOCLASS
COLN SHIPCLASS

-226-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER-AN IMPLEMENTATION

JSELN 1.0

CONNECTION 141
REL1 SHIPCLASSES
C0L1 SHIPCLASS
JSEL1 1.0
RELN SHIPS
COLN SHIPCLASS
JSELN 1.0

CONNECTION ISI
REL1 COUNTRIES
COL1 COUNTRYABB
JSEL1 0.2137
"RELN SHIPS
COLN COUNTRYOFREGISTRY
JSELN 1.0

CONNECTION 16!
REL1 COUNTRIES
COL1 COUNTRYABB
JSEL1 0.2992
RELN PORTS
COLN COUNTRY
JSELN 1.0

CONNECTION 171
REL1 CARGOCLASSES
COL1 CARGOCLASS
JSEL1 1.0
RELN SHIPCLASSCARGOCLASS
COLN CARGOCLASS
JSELN 1.0

CONNECTION 181
REL1 SHIPS
COL1 SHIPID
JSEL1 1.0
RELN VOYAGES
COLN SHIPID
JSELN 1.0

CONNECTION 19!
REL1 SHIPS
COL1 SHIPID
JSEL1 0.1045
RELN DOCKS
COLN SHIPID
JSELN 1.0

CONNECTION 110!
RELl PORTS
C0L1 PORTNAME
JSEL1 1.0
RELN DOCKS
COLN PORTNAHE
JSELN 1.0

CONNECTION 111!
REL1 PORTS
COL1 PORTNAHE
JSFL1 1.0
RELN WAREHOUSES
COLN PORTNAME
JSELN 1.0

CONNECTION 112!
REL1 CARGOCLASSES
COL1 CARGOCLASS
JSEL1 1.0
RELN WAREHOUSES
COLN CARGOCLASS
JSELN 1.0

CONNECTION 1131
REL1 VOYAGES
COl 1 SHIPID<-VOYAGENUMBER
JSEL1 1.0
RELN LEGS
COLN SHIPID<-VOYAGENUMBER
JSELN 1.0

CONNECTION 114!
REL1 VOYAGES
COL1 SHIPID<-VOYAGENUMBER
JSEL1 1.0
RELN STOPS
COLN SHIPID«-VOYAGENUMBER
JSELN 1.0

CONNECTION 115!
REL1 DOCKS
C0L1 P0RTNAHE<-DOCKNUMBER

-227

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

JSEL1 0.7
RELN STOPS
COLN PORTNAMEHJOCKNUHBER
JSELN 1.0

CONNECTION 1161
REL1 PORTS
C0L1 PORTNAHE
JSEL1 1.0
RELN STOPS
COLN PORTNAHE
JSELN 1.0

CONNECTION 117!
REL1 CARGOCLASSES
COL1 CARGOCLASS
JSEL1 1.0
RELN CARGOESONBOARO
COLN CARGOCLASS
JSELN 1.0

CONNECTION ! 181
REL1 CARGOCLASSES
COL1 CARGOCLASS
JSEL1 1.0
RELN LOADEDUNLOADEDCARGOES
COLN CARGOCLASS
JSELN 1.0

CONNECTION 1191
REL1 STOPS
COL1 SHIPID*-VOYAGENUMBER«-STOPNUMBER
JSEL1 0.6667
RELN LEGS
COLN SHIPID<-VOYAGENUMBER<-S0URCEST0P
JSELN 1.0

CONNECTION 120!
REL1 STOPS
COL1 SHIPID«-VOYAGENUMBER*-STOPNUMBER
JSEL1 0.6667
RELN LEGS
COLN SHIPID«-VOYAGENUMBER«-D£STINATIONSTOP
JSELN 1.0

CONNECTION 121!
REL1 STOPS
COL1 SHIPID«-VOYAGENUMBER«-STOPNUMBER
JSEL1 1.0
RELN LOADEDUNLOADEDCARGOES
COLN SHIPID«-VOYAGENUMBER<-STOPNUMBER
JSELN 1.0

CONNECTION !22l
REL1 LEGS
COL1 SHIPID<-VOYAGENUHBERvLEGNUHBER
JSEL1 0.2788
RELN TRACKS
COLN SHIPID-VOYAGENUMBER«-LEGNUMBER
JSELN 1.0

CONNECTION 123!
REL1 LEGS
COL1 SHIPID-VOYAGENUMBER*-LEGNUMBER
JSEL1 0.2788
RELN CARGOESONBOARO
COLN SHIPID«-VOYAGENUMBER<-LEGNUHBER
JSELN 1.0

USAGE
TRANSACTION 1

TYPE JQ FREQ 1000 10000 Deleted
1SH0W THE PRICE OF THE FUEL FOR THE SHIPTYPE "TIGER"!
SELECT SIITPCI ASSFS.SHIPCLASS. SHIPCLASSES . FUELTYPE , FUELTYPES . PRICE
FROM SHTPCLASSFS(0.12). FUELTYPES(0.33]
WHERE SHIPCLASSES.FUE1 TYPE = FUELTYPES.FUELTYPE AND

SHIPCLASSES.SHIPCLASS - "TIGER"

TRANSACTION 2
TYPE JQ FREQ 1000 10000 Deleted
1SH0W ALL THE ATTRIBUTES AND DESCRIPTION OF THE SHIPTYPE "LION"!
SELECT SHIPCLASSES.'. SHIPTYPES.DESCRIPTION
FROM SHIPCI.ASSES(l), SHIPTYPES(l)
WHERE SHIPCLASSES.SHIPTYPE = SHIPTYPES.SHIPTYPE AND

SHIPCLASSES.SHIPCLASS = "LION"

TRANSACTION 3
TYPE JQ FREQ 1000 10000 Deleted
!SHOW SHTPCLASSES THAT CAN CARRY MORE THAN 1000 M3'S LUHBER AND
THEIR TYPES, VOLUME CAPACITIES AND WEIGHT CAPACITIES!

-228-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

SELECT

FROM
WHERE

SHTPC'LASSES.SHIPCLASS, SHIPCIASSES.SHIPTYPE „„„„„,„„,.
SHIPCLASSCARGOCLASS.CARGOCLASS,SHIPCLASSCARGOCLASS.MAXVOLUME,
SHIPCLASSCARGOCLASS.MAXWEIGHT
SHIPCLASSESf0.12), SHIPCLASSCARGOCLASS(l)
SHIPCLASSES.SHIPCLASS = SHIPCLASSCARGOCLASS.SHIPCLASS AND
SHIPCLASSCARGOCLASS.CARGOCLASS = "LUMBER" AND
SHIPCLASSCARGOCLASS.MAXVOLUME > 1000

FROM
WHERE

TRANSACTION 4 .»„„,«...
TYPE JO FREQ 100 100 Deleted
'FIND ALL THE TANKERS IN REGION X, THEIR POSITIONS AND COUNTRIES OF
REGISTRY!

SELECT SHIPCIASSES.SHIPTYPE, SHIPS.»
SHIPCLASSES(0.12), SHIPS(l)
SHIPCLASSES.SHIPCLASS « SHIPS.SHIPCLASS AND
SHIPCIASSES.SHIPTYPE = "TANKER" AND
SHIPS.LATITUDE > 10.0 AND
SHIPS.LATITUDE < 20.0 AND
SHIPS.NORS = "N" AND
SHIPS.LONGITUDE > 40.0 AND
SHIPS.LONGITUDE < 60.0 AND
SHIPS.EORW = "W"

TRANSACTION 5 „ ,
TYPE JQ FRFQ 1000 10000 Deleted
ISHOW THE COUNTRY OF REGISTRY OF "PACIFIC<-PRINCESS" I
SELECT SHIPS.SHIPNAME, COUNTRIES.COUNTRYNAME
FROM SHIPS(0.29), COUNTRIES(0.78)
WHERE SHIPS.COUNtRYOFREGISTRY = COUNTRIES.COUNTRYABB AND

SHIPS.SHIPNAME = "PACIFIC«-PRINCESS"

TRANSACTION 6 _n„
TYPE JQ FREQ 200 20000 Deleted
ISHOW ALL THE ATTRIBUTES AND COUNTRYNAME OF PORT
SELECT PORTS.*. COUNTRIES.COUNTRYNAME
FROM PORTS(l), COUNTRIES(0.78)
WHERE PORTS.COUNTRY = COUNTRIES.COUNTRYABB AND

PORTS.PORTNAME = "SANFRANCISCO"

'SANFRANCISCO"!

VOLUME

TRANSACTION 7
TYPE JQ FREQ 100 10000 Deleted
'SHOW THE SHIPCLASSFS THAT CAN CARRY "LUMBER", THEIR WEIGHT,
'CAPACITIES FOR "IUMBER" AND WUNIT, VUNIT OF "LUMBER"!
SELECT CARGOCIASSFS.CARGOCLASS, CARGOCLASSES.WUNIT.CARGOCLASSES.VUNIT.

SHIPCLASSCARGOCLASS.SHIPCLASS, SHIPCLASSCARGOCLASS.MAXVOLUME.
SHIPCLASSCARGOCLASS.MAXWEIGHT

FROM CARGOCLASSES(l). SHIPCLASSCARGOCLASS(1) „„„,„,,„,„„
WHERE CARGOCIASSFS.CARGOCLASS = SHIPCLASSCARGOCLASS.CARGOCLASS AND

SHIPCLASSCARGOCLASS.CARGOCLASS = "LUMBER"

TRANSACTION 8 „ ,
TYPE JQ FREQ 1000 1000 Deleted
!SHOW THE INFORMATION ABOUT ALL THE SHIPS CHARTERED BY

SELFCT VOYAGES.CHARTERER, SHIPS.SHIPNAME, VOYAGES.VOYAGENUMBER,
SHIPS.IRCS. SHI PS.COUNTRYOFREGISTRY

FROM VOYAGES(l). SHIPS(0.40)
WHFRE VOYAGES.SHIPID = SHIPS.SHIPID AND

VOYAGFS.CHARTERER = "ATLANTIC«-OIL«-CO"

TRANSACTION 9 „ , * .,
TYPE JQ FRFQ 1000 10000 Deleted
ISHOW THE NAMF OF THE SHIP ANCHORED AT SANFRANCISCO DOCK # 7!
SELECT DOCKS.PORTNAME, DOCKS.DOCKNUMBER, SHIPS.SHIPNAME
FROM DOCKS(0.79), SHIPS(0.32)
WHFRE DOCKS.SHIPID = SHIPS.SHIPID AND

DOCKS. PORTNAME*-DOCKNUMBER = "SANFRANCISCO" 7

TRANSACTION 10
TYPE JQ FREQ 100 30000 Deleted
ISHOW ALL THE ATTRIBUTES OF SANFRANCISCO PORT AND ITS DOCKS!
SELECT PORTS.*, DOCKS.*
FROM PORTS(l), DOCKS(l)
WHFRF PORTS.PORTNAME - DOCKS.PORTNAME AND

PORTS.PORTNAME = "SANFRANCISCO"

TRANSACTION 11 rnnn
TYPF JQ FREQ 500 5000 Deleted
ISHOW THF NAMFS OF THE PORTS IN CANADA THAT CAN STORE
SFIFCT PORTS.PORTNAME

PORTS(0.42), WAREH0USES(0.38)
PORTS.PORTNAMF = WAREHOUSES.PORTNAME AND
PORTS.COUNTRY = "CANADA" AND
WAREHOUSES.CARGOCLASS - "EXPLOSIVES"

•EXPLOSIVES"!

FROM
WHERE

TRANSACTION 12 „ ,
TYPE JQ FREQ 200 2000 Deleted
'SHOW THE ATTRIRUTFS OF ALI THE WARFHOUSFS OF PORT "SANFRANCISCO" AND
'THE WEIGHT AND VOLUME UNITS OF CARGOCLASSES THEY CAN STORE!
SELFCT WAREHOUSES.*. CARGOCLASSES.WUNIT, CARGOCLASSES.VUNIT
FROM WARFHOUSFS(l). CARGOCLASSFSI1)
WHERE WARFHOUSFS.CARGOCl ASS = CARGOClASSES.CARGOClASS AND

WAREHOUSES.PORTNAME = "SANFRANCISCO"

229

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

TRANSACTION 13
TYPE JQ FREQ 10000 1000 Deleted
ISHOW THE RECENT VOYAGES OF SHIP 10105. THEIR LEGS AND CHARTERERS!
SELECT VOYAGES.SHIPID, VOYAGES.VOYAGENUMBER.VOYAGES.CHARTERER,

LEGS.SOURCESTOP, LEGS.DESTINATIONSTOP
FROM VOYAGES(l). LEGS(l)
WHERE VOYAGES. SHI PID<-VOYAGENUMBER = LEGS .SHIPID«-VOYAGENUMBER AND

VOYAGES.SHIPID = 10105

TRANSACTION 14
TYPE JQ FREQ 10000 1000 Deleted
ISHOW THE RECENT VOYAGFS OF SHIP 10105 AND THEIR STOPSI
SELECT VOYAGES.SHIPID. VOYAGES.VOYAGENUMBER, VOYAGES.CHARTERER.

STOPS.«
FROM VOYAGES(l), STOPS(l)
WHERE VOYAGES.SHIPIDM/OYAGENUMBER = STOPS .SHIPID^VOYAGENUHBER AND

VOYAGES.SHIPID = 10105

TRANSACTION 15
TYPE JQ FREQ 500 5000 Deleted
ISHOW THE ATTRIBUTES OF THE DOCK AT WHICH SHIP 10105 WILL BE ANCHORED
AT THE SECOND STOP ON VOYAGE 511

SELECT DOCKS.«
FROM ST0PS(0.40), OOCKS(l)
WHERE STOPS. PORTNAME-DOCKNUMBER = DOCKS. PORTNAME.-DOCKNUMBER AND

STOPS.SHIPID«-VOYAGENUMBER<-STOPNUMBER = 10105 51 2

TRANSACTION 16
TYPE JQ FREQ 10000 10000 Deleted
ISHOW THE NAME OF THE PORT AND ITS COUNTRYNAME AT WHICH SHIP 10105
WILL BE ANCHORED AT THE SECOND STOP ON VOYAGE 511

SELECT PORTS.PORTNAME, PORTS-COUNTRY
FROM ST0PS(0.35), P0RTS(0.47)
WHERE STOPS.PORTNAME = PORTS.PORTNAME AND

STOPS.SHIPID<-VOYAGENUMBER*-STOPNUMBER = 10105 51 2

TRANSACTION 17
TYPE JQ FREQ 1000 10000 Deleted
ISHOW THE CARGOES ON BOARD OF SHIP 10105 AND THEIR WEIGHT, VOLUME, AND
UNITS ON LEG 2 OF VOYAGE 51!

SELECT CARGOESONBOARD.*, CARGOCLASSES.WUNIT, CARGOCLASSES.VUNIT
FROM CARGOESONBOARD(l), CARGOCLASSESf1)
WHERE CARGOESONBOARD.CARGOCLASS = CARGOCLASSES.CARGOCLASS AND

CARGOESONBOARD.SHIPID<-VOYAGENUMBER«-LEGNUMBER =■ 10105 51 2

TRANSACTION 18
TYPE JQ FREQ 1000 10000 Deleted
1SHOWS THE CARGOES, THFIR WEIGHTS, VOLUMES, AND UNITS THAT SHIP 10105
UNLOADED AT THE SECOND STOP ON VOYAGE 51!

SELECT LOADEDUNLOADEDCARGOES.', CARGOCLASSES.WUNIT, CARGOCLASSES.VUNIT
FROM LOADEDUNLOADEDCARGOES(l), CARGOCLASSES(1)
WHERE LOADEDUNLOADEDCARGOES.CARGOCLASS = CARGOCLASSES.CARGOCLASS AND

LOADEDUNLOADEDCARGOES. SHI PID«-VOYAGENUMBER<-STOPNUMBER -
10105 51 2 AND

LOADEDUNLOADEDCARGOES.LORU = "L"

TRANSACTION 19
TYPE JQ FREQ 100000 10000 Deleted
ISHOW THE SOURCE STOP'S PORTNAME OF LEG 2 OF VOYAGE 51 OF SHIP 101051
SELECT LEGS.SHIPID, LEGS.VOYAGENUMBER, LEGS.LEGNUMBER, STOPS.PORTNAME
FROM LFGS(0.82), ST0PS(0.56)
WHERE LEGS.SHIPID<-VOYAGENUMBER<-SOURCESTOP =

STOPS.SHIPID<-VOYAGFNUMBER<-STOPNUMBER AND
LEGS.SHIPID<-VOYAGENUMBER<-LEGNUMBER = 10105 51 2

TRANSACTION 20
TYPE JQ FREQ 100000 10000 Deleted
ISHOW THE DESTINATION STOP'S PORTNAME OF LEG 2 OF VOYAGE 51 OF
SHIP 10105!

SELECT LEGS.SHIPID, LEGS.VOYAGENUMBER, LEGS.LEGNUMBER, STOPS.PORTNAME
FROM LEGS(0.82), ST0PS(0.56)
WHERE LEGS.SHIPID«-VOYAGFNUMBER<-DESTINATIONSTOP =

STOPS. SHIPID<-VOYAGENUMBER«-STOPNUMBER AND
LEGS.SHIPID<-VOYAGENUMBER«-LEGNUMBER = 10105 51 2

TRANSACTION 21
TYPE JQ FREQ 200000 2000 Deleted
ISHOW AIL THE CARGOES SHIP 10105 LOADED/UNLOADED AT EACH STOP ON
VOYAGE 51!

SELECT STOPS.SHIPID, STOPS.VOYAGENUMBER, STOPS.STOPNUMBER,
STOPS.PORTNAME, LOADEDUNLOADEDCARGOES.•

FROM ST0PS(0.56), l.OADEDUNI OADEDCARGOESf 1)
WHERE STOPS. SHIPID-VOYAGENUMBER«-STOPNUMBER =

LOADEDUNLOADEDCARGOES. SHI PID*-VOYAGENUMBER<-STOPNUMBER AND
STOPS.SHIPID«-VOYAGENUMBER = 10105 51

TRANSACTION 22
TYPE JQ FREQ 5000 5000 Deleted
ISHOW THE IFGS AND THEIR TRACK INFORMATION OF SHIP 10105!
SELECT LEGS.SHIPID, LEGS.SOURCESTOP, LEGS.DESTINATIONSTOP, TRACKS.»
FROM LFGS(l). TRACKS 1)
WHERE LEGS.SHIPID«-VOYAGENUMBER<-LEGNUMBER »

-230

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

TRACKS.SHIPID«-VOYAGENUMBER«-LEGNUMBER AND
LEGS.SHIPID = 10105

TRANSACTION 23
TYPE JQ FREQ 100000 10000 Deleted
1SHOW THE SOURCE STOP, DESTINATION STOP OF LEG 2 OF VOYAGE 51 OF
SHIP 10105 AND CARGOES ON BOARD ON THAT LEG!

SELECT LEGS.SOURCFSTOP, LEGS.DESTINATIONSTOP. CARGOESONBOARD.•
LEGS(l), CARGOESONBOARD(l)
LFGS.SHIPID«-VOYAGENUMBFR<-LEGNUMBER =

CARGOESONBOARD.SHIPID<-VOYAGENUMBER«-LEGNUMBER AND
LEGS.SHIPID<-VOYAGENUMBER<-LEGNUMBER = 10105 51 2

FROM
WHERE

TRANSACTION 104
TYPE JQ FREQ 200 200 Deleted
1SHOW THE NAME. TYPE. AND DEADWEIGHT OF SHIPS REGISTERED IN NETHERLANDS!
SELECT SHIPS.COUNTRYOFREGISTRY, SHIPS.SHIPNAME,

SHI PCL ASSES.SHIPTYPE, SHIPCLASSES.DEADWEIGHT
FROM SHIPS(0.32), SHIPCLASSES(0.21)
WHERE SHIPS.SHIPCLASS = SHIPCLASSFS.SHIPCLASS AND

SHIPS.COUNTRYOFREGISTRY = "NT"

TRANSACTION 108
TYPE JQ FREQ 200 2000 Deleted
1SH0W ALL THE SHIPS OWNED BY "ONASIS" AND THEIR VOYAGES AND CHARTERERS!
SELECT SHIPS.OWNER, SHIPS.SHIPNAME,

VOYAGES.VOYAGENUMBER, VOYAGES.CHARTERER
FROM SHIPS(0.62), VOYAGES(l)
WHERE SHIPS.SHIPID = VOYAGES.SHIPID AND

SHIPS.OWNER = "ONASIS"

TRANSACTION 110
TYPE JQ FREQ 100 1000 Deleted
'FIND THE PORTS AND THEIR LOCATIONS THAT HAVE DOCKS MORE THAN 50 FT
DEEP!
SELECT PORTS.PORTNAME, PORTS.COUNTRY, PORTS.LATITUDE, PORTS.NORS,

PORTS.LATITUDE, PORTS.EORW, DOCKS.DOCKNUMBER, DOCKS.MAXLENGTH
FROM
WHERE

PORTS(0.70), D0CKS(0.73) , -A-...- /S0RTNAME AND PORTS.PORTNAME
DOCKS.MAXDRAFT

= DOCKS.
> 50

TRANSACTION 113
TYPE JQ FREQ 1000 1000 Deleted
1SHOW AIL THE VOYAGES AND THEIR LEGS THAT ARE CHARTERED BY
"ATLANTIC<-OIL*-CO"!

SELECT VOYAGES.SHIPID, VOYAGES.VOYAGENUMBER, LEGS.»
FROM VOYAGES(l), LEGS(l)
WHERF VOYAGES. SHIPID<-VOYAGENUMBER = LEGS . SHIPID<-VOYAGENUMBER AND

VOYAGES.CHARTERER = "ATLANTIC*-OIL*-CO"

TRANSACTION 121
TYPE JQ FREQ 100 10000 Deleted
IFIND THE PORTS WHERE SHIP 10105 UNI OADED "LUMBER" ON VOYAGE 51,
AND THE TIME THF SHIP ARRIVED AT THESE PORTS!

SEIECT STOPS.PORTNAME, STOPS.ARRIVAL DATE, STOPS.ARRIVALTIME
FROM STOPS(0.76). LOAOEDUNLOADEDCARGOESfO.37)
WHERE STOPS.SHIPID^VOYAGENUMBER<-STOPNUMBER =

LOADFDUNI OADEDCARGOFS . SHIPID*-VOYAGENUMBER<-STOPNUMBER AND
LOADFDUNIOADEDCARGOES.SHIPID = 10105 AND
LOADFDUNIOAOFDCARGOES.VOYAGENUMBER = 51 AND
LOADFDUNLOAOEDCARGOES.CARGOCLASS = "LUMBER" AND
LOADEDUNLOADEDCARGOES.LORU « "U"

TRANSACTION 122
TYPE JQ FREQ 500 5000 Deleted
IFIND THE DESTINATION, COURSE AND SPEED OF THE SHIP TRACKED BY
THE SITE AT "PORTSMOUTH" AT 18:22 ON JUNE 22, 1982!

SEIECT LEGS.DESTINATIONSTOP, TRACKS.COURSE, TRACKS.SPEED
FROM TRACKS(0.25), LEGS(0.82)
WHERE LEGS.SHIPTD<-VOYAGENUMBER<-LEGNUMBER •

TRACKS. SHIPID<-VOYAGENUMBER<-LEGNUMBER AND
TRACKS.DATE = 062682 AND
TRACKS.TIME = 1822 AND
TRACKS.REPORTER = "PORTSMOUTH"

TRANSACTION 201
TYPE SQ FRFQ 100 10000 Deleted
IFIND SHIPCIASSES OF TYPE "TRAWLER" AND THEIR DEADWEIGHT AND
CRUISING SPEED!

SELECT SHIPCIASSES.SHIPCLASS, SHIPCLASSES.DEADWEIGHT,
SHIPCLASSES.CRUISESPD

FROM SHIPCLASSES
WHERE SHIPCLASSES.SHIPTYPE = "TRAWLER"

TRANSACTION 202
TYPE SQ FREQ 200 20000 Deleted
!FIND SHIPCLASSES AND THEIR TYPES WHOSE DEADWEIGHTS EXCEED 10000 TONS!
SEIECT SHIPCLASSES.SHIPCLASS, SHIPCLASSES.SHIPTYPES
FROM SHIPCLASSES
WHERE SHIPCLASSES.DEADWEIGHT > 10000

TRANSACTION 203
TYPE SQ FREQ 5000 5000 Deleted

-231

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

IFIND THE IRCS AND THE POSITION OF "QE2"!
SELECT SHIPS.IRCS. SHIPS.LONGITUDE, SHIPS.EORW, SHIPS.LATITUDE.

SHIPS.NORS
FROH SHIPS
WHERE SHIPS.SHIPNAHE = "QEZ"

TRANSACTION 204
TYPE SQ FREQ 100 10000 Deleted
ISHOW ALL THE ATTRIBUTES OF PORT "ALEXANDRIA"I
SELECT PORTS.*
FROM PORTS
WHERE PORTS.PORTNAHE = "ALEXANDRIA"

TRANSACTION 205
TYPE SQ FREQ 100 10000 Deleted
IFIND ALL THE PORTS IN "FRANCE"!
SELECT PORTS.PORTNAHE
FROM PORTS
WHERE PORTS.COUNTRY « "FRANCE"

TRANSACTION 206
TYPE SQ FREQ 100 10000 Deleted
(DESCRIBE ALL THE ATTRIBUTES OF DOCKS IN HARSEILLES!
SELECT DOCKS.»
FROM DOCKS
WHERE DOCKS.PORTNAME = "MARSEILLES"

TRANSACTION 207
TYPE SQ FREQ 5000 5000 Deleted
ISHOW THE CARGOES, VOLUME CAPACITY AND WEIGHT CAPACITY OF WAREHOUSE 6
OF PORT MARSEILLES!

SELECT WAREHOUSES.CARGOCLASS, WAREHOUSES.QUANTITYWEIGHT,
WAREHOUSES.QUANTITYVOLUME

FROM WAREHOUSES
WHERE WAREHOUSES.PORTNAME = "MARSEILLES" AND

WAREHOUSES.WAREHOUSENUMBER = 5

TRANSACTION 208
TYPE SQ FREQ 40000 20000 Deleted
ISHOW ALL THE ATTRIBUTES OF THE STOPS THE SHIP 10105 HADE ON VOYAGE 511
SELECT •
FROM STOPS
WHERE STOPS.SHIPID = 10105 AND

STOPS.VOYAGENUMBER = 51

TRANSACTION 209
TYPE SQ FREQ 24000 24000 Deleted
!FINO THE CHARTERER OF VOYAGE 51 OF THE SHIP 10105!
SELECT VOYAGE.CHARTERER
FROM VOYAGES
WHERE VOYAGES.SHIPID<-VOYAGENUMBER = 10105 51

IFOR TRANSACTIONS OF TYPE AQ, IF AGGREGATION OPERATORS COUNT,AVG,SUM ARE USED,
THE PROJECTION FACTOR MUST BE 1, SINCE DUPLICATES SHOULD NOT BE REHOVED.
IF MIN, HAX ARF USED, THE PROJECTION FACTOR DEPENDS ON THE SELECTED FIELDS
AND THE FIELDS IN THE GROUP BY CLAUSE.!

TRANSACTION 301
TYPE AQ FREQ 100 100 Deleted
ISHOW THE OWNERS WHO OWN MORE THAN 10 SHIPS AND HOW MANY SHIPS
THEY OWN!

SELECT SHIPS.OWNER, COUNTf»)
FROM SHIPS
GROUP BY SHIPS.OWNER
HAVING COUNT(») > 10

TRANSACTION 302
TYPE AQ FREQ 100 1000 Deleted
!FIND THE AVERAGE MAXDRAFT OVER AIL DOCKS OF EACH PORTI
SELECT DOCKS.PORTNAME, AVG(DOf>£ MAXDRAFT)
FROM DOCKS
GROUP BY DOCKS.PORTNAME

TRANSACTION 303
TYPE AQ FREQ 100 100 Deleted
ISHOW HOW MANY VOYAGES FACH CHARTERER CHARTERED FOR 1 YEAR!
SEI.FCT VOYAGFS.CHARTERFR, COUNT(»)
FROM VOYAGFS
GROUP BY VOYAGES.CHARTERER

TRANSACTION 304
TYPE AQ FREQ 200 20 Deleted
ISHOW HOW MANY SHIPS USED EACH PORT FROM JAN 1, 1982 TO JUNE 30, 19821
SELECT STOPS.PORTNAME, COUNTf»)
FROM STOPS
WHERE STOPS.ARRIVAIDATE > 010181 AND

STOPS.ARRIVALOATE < 063082
GROUP BY STOPS.PORTNAME

TRANSACTION 305
TYPE AQ FREQ 1000 10000 Deleted
ISHOW THE TOTAL WFIGHT AND VOLUME OF CARGOES ON BOARD OF SHIP 10105
DURING THE SECOND LEG OF VOYAGE 51!

- 232 -

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

SELECT SUM(CARGOESONBOARD.QUANTITYWEIGHT),
SUM(CARGOESONBOARD.QUANTITYVOLUME)

FROM CARGOESONBOARD
WHERE CARGOESONBOARD.SHIPID«-VOYAGENUMBER«-LEGNUMBER - 10105 51 2

TRANSACTION 401
TYPE INS FREQ 0.1 10000 10000
INSERT INTO FUELTYPES:

<"OIL<-C", 30, "GALLON")

TRANSACTION 402
TYPE INS FREQ 0.1 10000 10000
INSERT INTO SHIPTYPES:

<"TRAWLER", "A«-FISHING«-VESSEL«-WHICH<-USES«-A<-TRAWLNET">

TRANSACTION 403
TYPE INS FREQ 10 10000 10000
INSERT INTO SHIPCLASSES:

<"TANKER", "SX«-7", "OTHER«-ATTRIBUTES">

TRANSACTION 404
TYPE SD FREQ 10 10000 10000
DELETE SHIPCLASSES
WHERE SHIPCLASSES.SHIPCLASS = "DRAGON-

TRANSACTION 405
TYPE INS FREQ 100 10000 10000
INSERT INTO SHIPCLASSCARGOCLASS:

<"SX<-7", "GRAIN", 20000, 10000>

TRANSACTION 406
TYPE SD FREQ 10 5000 5000
DELETE SHIPCLASSCARGOCLASS
WHERE SHIPCLASSCARGOCLASS.SHIPCLASS = "DRAGON"

TRANSACTION 407
TYPE INS FREQ 0.1 10000 10000
INSERT INTO COUNTRIES:

<"NC", "NEW<-COUNTRY", 1000000>

TRANSACTION 408
TYPE INS FREQ 5 5000 5000
INSERT INTO PORTS:

<"KUMI", "KR", "OTHER<-ATTRIBUTES">

TRANSACTION 409
TYPE SD FREQ 1 10000 10000
DELETE PORTS
WHERE PORTS. PORTNAME = "OLD»-PORT"

TRANSACTION 410
TYPE INS FREQ 10 10000 10000
INSERT INTO CARGOCLASSES:

<"NEW<-CARGOCLASS", "TON", "M3">

TRANSACTION 411
TYPE INS FREQ 50 5000 5000
INSERT INTO DOCKS:

<0, "KUMI", 1, 50, 200, "N">

TRANSACTION 412
TYPE INS FREQ 500 5000 5000
INSERT INTO WAREHOUSES:

<"BOSTON", 11. "OTHER«-ATTRIBUTES">

TRANSACTION 413
TYPE INS FREQ 8610 4300 4300
INSERT INTO VOYAGES:

<10105, 320, "ATLANTIC«-OIL«-CO">

TRANSACTION 414
TYPE SD FREQ 8610 4300 4300
DELETE VOYAGES
WHERE VOYAGES.SHIPID<-VOYAGENUMBER = 10105 320

TRANSACTION 415
TYPE INS FREQ 25830 2583 2583
INSERT INTO STOPS:

<10105, 320, 5, "OTHER«-ATTRIBUTES">

TRANSACTION 416
TYPE SD FREQ 25830 2583 2583
DELETE STOPS
WHERE STOPS.SHIPID<-VOYAGENUMBER*-STOPNUMBER = 10105 320 5

TRANSACTION 417
TYPE INS FREQ 77490 7749 7749
INSERT INTO LOADEDUNLOADEDCARGOES:

<10105, 320, 5, "OTHER«-ATTRIBUTES">

TRANSACTION 418
TYPE SD FREQ 77490 7749 7749
DELETE LOADEDUNLOADEDCARGOES

233-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER-AN IMPLEMENTATION

WHERE LOADEDUNLOADEDCARGOES.SHIPID<-VOYAGENUMBER<-STOPNUMBER -
10105 320 5

TRANSACTION 419
TYPE INS FREQ 17220 2000 2000
INSERT INTO LEGS:

<10105, 320, 5, "OTHER«-ATTRIBUTES">

TRANSACTION 420
TYPE SD FREQ 17220 2000 2000
DELETE LEGS
WHERE LEGS.SHIPID<-VOYAGENUMBER<-LEGNUMBER = 10105 32 5

TRANSACTION 421
TYPE INS FREQ 12000 12000 12000
INSERT INTO CARG0ES0NBOARD:

<10105. 320, 5, "OTHER<-ATTRIBUTES">

TRANSACTION 422
TYPE SD FREQ 12000 12000 12000
DELETE CARGOESONBOARD
WHERE CARGOESONBOARD.SHIPID<-VOYAGENUMBER«-LEGNUMBER = 10105 32 5

TRANSACTION 423
TYPE INS FREQ 2400 2400 2400
INSERT INTO TRACKS:

<10105, 320, 5, "OTHER«-ATTRIBUTES">

TRANSACTION 424
TYPE SD FREQ 2400 2400 2400
DELETE TRACKS
WHERE TRACKS.SHIPID<-VOYAGENUMBER«-LEGNUMBER * 10105 32 5

TRANSACTION 501
TYPE SU FREQ 100 10000 10000
UPDATE FUELTYPES
SET FUELTYPES.PRICE = 140
WHERE FUELTYPES.FUELTYPE = "GASOLINE"

TRANSACTION 502
TYPE SU FREQ 500 500 500
UPDATE SHIPS
SET SHIPS.OWNER • "PACIFIC«-TRADING<-CO" ,
SET SHIPS.SHIPNAME = " TRADE<-WIND"
WHERE SHIPS.SHIPID « 10105

TRANSACTION 503
TYPE SU FREQ 200 2000 2000
UPDATE SHIPS
SET SHIPS.COUNTRYOFREGISTRY = "SPAIN"
WHERE SHIPS.SHIPID = 10105

TRANSACTION 504
TYPE SU FREQ 17220 17220 17220
UPDATE SHIPS
SET SHIPS.LATITUDE = 20.45.
SET SHIPS.NORS = "N",
SET SHIPS.LONGITUDE = 40.00,
SET SHIPS.EORW = "W",
SET SHIPS.DATEREPORTED « 063082,
SET SHIPS.TIMEREPORTED « 1724,
SET SHIPS.ATPORTORSEA - "S"
WHERE SHIPS.SHIPID = 10105

TRANSACTION 505
TYPE SU FREQ 234 11700 11700
UPDATE COUNTRIES
SET COUNTRIES.POPULATION = 35000000
WHERE COUNTRIES.COUNTRYABB = "KR"

TRANSACTION 506
TYPE SU FREQ 10000 10000 10000
UPDATE PORTS
SET PORTS.NUMBEROFSHIPSATPORT « 15
WHERE PORTS.PORTNAME • "NEWORLEANS"

TRANSACTION 507
TYPE SU FREQ 15000 15000 15000
UPDATE DOCKS
SET DOCKS.SHIPID - 10105,
SET DOCKS. OCCUPIEDORNOTOCCUPIED =■ "0"
WHERE DOCKS. PORTNAME<-DOCKNUHBER = "NEW0RLEANS«-5"

TRANSACTION 508
TYPE SU FREQ 2000 20000 20000
UPDATE WAREHOUSES
SET WAREHOUSES.USEDORUNUSEO = "Y"
WHERE WAREHOUSES.PORTNAME » "NEWORLEANS" AND

WAREHOUSES.WAREHOUSENUMBER ■ 7

TRANSACTION 509
TYPE SU FREQ 25830 8600 8600
UPDATE STOPS

234-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

SET STOPS.ARRIVALDATE - 063082.
SET STOPS.ARRIVALTIME ="1545,
SET STOPS.DOCKNUMBER = 7
WHERE STOPS. SHIPID*-VOYAGENUMBER«-STOPNUMBER 10105 3203

TRANSACTION 510
TYPE SU FREQ 25830 8600 8600
UPDATE STOPS
SET STOPS.DEPARTUREDATE = 070582,
SET STOPS.OEPARTURETIME = 0542
WHERE STOPS. SHIPID«-VOYAGENUMBER«-STOPNUMBER 10105 320 3

TRANSACTION 511
TYPE INS FREQ 100
INSERT INTO SHIPS:

<"NEW<-SHIP", 10105,

200 200

"OTHER«-ATTRIBUTES">

TRANSACTION 512
TYPE SD FREQ 50
DELETE SHIPS
WHERE SHIPS.SHIPID = 10105

20 20

TRANSACTION 601
TYPE JU FREQ 170 170 170
UPDATE STOPS
SET STOPS.PORTNAME = "LONDON"
FROM STOPS, LEGS(0.65)
WHERE STOPS.SHIPID<-VOYAGENUMBER<-STOPNUMBER >

LEGS.SHIPID<-VOYAGENUMBER«-DESTINATIONSTOP
LEGS.SHIPID*-VOYAGENUMBER*-LEGNUMBER = 10105 320 4

AND

TRANSACTION 602
TYPE
UPDATE
SET
FROM
WHERE

JU
STOPS
STOPS
STOPS

FREQ 100 100 100

PORTNAME = "LISBON"
LEGS(0.65)

STOPS.SHIPID<-VOYÄGENUMBER«-STOPNUMBER =■
LEGS.SHIPID<-VOYAGENUMBER«-SOURCESTOP AND

LEGS.SHIPID«-VOYAGENUMBER«-LEGNUMBER =■ 10105 320 5

-235

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER- AN IMPLEMENTATION

SCHEMA7X t KBMS DATABASE
110 ATTRIBUTES IN 16 RELATIONS

SHIPTYPES
 7F~

FUELTYPES

Z2E1
SHIPCLASSES

/\

* SHIPCLASS-CARGOCLASS

SHIPS

_äi

COUNTRIES
^TK

DOCKS
/\

VOYAGES

PORTS CARGOCLASSES

WAREHOUSES

STOPS

LEGS

TRACKS

LOADEDUNLOADEDCARGOES

CARGOESONBOARD

-236-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER- AN IMPLEMENTATION

OPTIMAL ACCESS CONFIGURATION FOR SITUATION 70

TOTALCOST = 5.415462017E+06

RELATION TRACKS

SHIPID
INDEX = FALSE CLUSTERED - TRUE

VOYAGENUMBER
INDEX = FALSE CLUSTERED • FALSE

LEGNUMBER
INDEX = FALSE CLUSTERED - FALSE

DATE
INDEX = FALSE CLUSTERED - FALSE

TIME
INDEX • TRUE CLUSTERED - FALSE

COURSE
INDEX * FALSE CLUSTERED - FALSE

SPEED
INDEX = FALSE CLUSTERED = FALSE

LATITUDE
INDEX - FALSE CLUSTERED = FALSE

NORS
INDEX = FALSE CLUSTERED = FALSE

LONGITUDE
INDEX = FALSE CLUSTERED = FALSE

EORW
INDEX = FALSE CLUSTERED = FALSE

REPORTER
INDEX = FALSE CLUSTERED = FALSE

SHIPID<-VOYAGENUMBER«-LEGNUMBER
INDEX = TRUE CLUSTERED - TRUE

RELATION CARGOESONBOARD

SHIPID
INDEX = FALSE CLUSTERED - TRUE

VOYAGENUMBER
INDEX = FALSE CLUSTERED - FALSE

LEGNUMBER
INDEX = FALSE CLUSTERED = FALSE

CARGOCLASS
INDEX - FALSE CLUSTERED = FALSE

QUANTITYWEIGHT
INDEX = FALSE CLUSTERED - FALSE

QUANTITYVOLUME
INDEX = FALSE CLUSTERED = FALSE

SHIPID«-VOYAGENUMBER<-LEGNUMBER
INDEX = TRUE CLUSTERED = TRUE

RELATION LOADEDUNLOADEDCARGOES

SHIPID
INDEX TRUE CLUSTERED TRUE

VOYAGENUMBER
INDEX = FALSE CLUSTERED - FALSE

STOPNUMBER
INDEX - FALSE CLUSTERED = FALSE

CARGOCLASS
INDEX = FALSE CLUSTERED = FALSE

LORU
INDEX = FALSE CLUSTERED ■= FALSE

QTYWGHT
INDEX = FALSE CLUSTERED « FALSE

-237-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

QTYVOL
INDEX - FALSE CLUSTERED FALSE

SHIPID<-VOYAGENUMBER<-STOPNUMBER
INDEX = TRUE CLUSTERED = TRUE

RELATION WAREHOUSES

PORTNAME
INDEX = TRUE CLUSTERED - TRUE

WAREHOUSENUMBER
INDEX = FALSE CLUSTERED = FALSE

CARGOCLASS
INDEX = FALSE CLUSTERED =■ FALSE

USEDORUNUSED
INDEX * FALSE CLUSTERED = FALSE

QUANTITYWEIGHT
INDEX = FALSE CLUSTERED ■ FALSE

QUANTITYVOLUME
INDEX = FALSE CLUSTERED » FALSE

RELATION PORTS

PORTNAME
INDEX = TRUE CLUSTERED = TRUE

COUNTRY
INDEX = FALSE CLUSTERED ' FALSE

LATITUDE
INDEX = FALSE CLUSTERED = FALSE

NORS
INDEX = FALSE CLUSTERED • FALSE

LONGITUDE
INDEX » FALSE CLUSTERED = FALSE

EORW
INDEX = FALSE CLUSTERED - FALSE

MAXDRAFT
INDEX = FALSE CLUSTERED - FALSE

NUMBEROFDOCKS
INDEX = FALSE CLUSTERED = FALSE

MAXLENGTH
INDEX = FALSE CLUSTERED - FALSE

NUMBEROFSHIPSATPORT
INDEX - FALSE CLUSTERED = FALSE

PORTNAME
INDEX = TRUE CLUSTERED = TRUE

DOCKNUMBER
INDEX = FALSE CLUSTEREO = FALSE

SHIPID
INDEX = FALSE CLUSTEREO - FALSE

MAXDRAFT
INDEX = FALSE CLUSTERFD « FALSE

MAXLENGTH
INDEX • FALSE CLUSTERED = FALSE

OCCUPIEDORNOTOCCUPIED
INDEX = FALSE CLUSTERED = FALSE

PORTNAME<-DOCKNUMBER
INDEX = TRUE CLUSTERED = TRUE

RELATION STOPS

TRUE CLUSTERED
SHIPID
INDEX - TRUE

-238-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER-AN IMPLEMENTATION

J-
VOYAGENUMBER
INDEX = FALSE CLUSTERED - FALSE

STOPNUMBER
INDEX = FALSE CLUSTERED = FALSE

\
PORTNAME
INDEX = FALSE CLUSTERED - FALSE

ARRIVALDATE
INDEX = FALSE CLUSTERED = FALSE

ARRIVALTIME
INDEX = FALSE CLUSTERED * FALSE

DEPARTUREDATE
INDEX = FALSE CLUSTERED - FALSE

DEPARTURETIME
INDEX = FALSE CLUSTERED - FALSE

DOCKNUMBER
INDEX = FALSE CLUSTERED = FALSE

SHIPID<-VOYAGENUMBER
INDEX = TRUE CLUSTERED » TRUE

SHIPID»-VOYAGENUMBER<-STOPNUMBER
INDEX = TRUE CLUSTERED = FALSE

PORTNAME<-DOCKNUMBER
INDEX = FALSE CLUSTERED - FALSE

RELATION LEGS

SHIPID
INDEX = TRUE CLUSTERED = TRUE

VOYAGENUM8ER
INDEX = FALSE CLUSTERED * FALSE

LEGNUMBER
INDEX = FALSE CLUSTERED - FALSE

SOURCESTOP
INDEX = FALSE CLUSTERED = FALSE

DESTINATIONSTOP
INDEX = FALSE CLUSTERED = FALSE

SHIPID«-VOYAGENUMBER
INDEX = TRUE CLUSTERED = TRUE

SHIPID<-VOYAGENUMBER<-LEGNUMBER
INDEX = TRUE CLUSTERED = FALSE

SHJPID<-VOYAGENUMBER<-SOURCESTOP
INDEX = FALSE CLUSTERED ■= FALSE

SHTPTD<-VOYAGENUMBER*-DESTINATIONSTOP
INDEX = FALSE CLUSTERED = FALSE

RELATION VOYAGES

SHIPID
INDEX = TRUE CLUSTERED = FALSE

VOYAGENUMBER
INDEX = FALSE CLUSTERED = FALSE

""
CHARTERER
INDEX = TRUE CLUSTERED = TRUE

SHIPID<-VOYAGENUMBER
INDEX = TRUE CLUSTERED = FALSE

» RELATION CARGOCLASSES

CARGOCLASS
INDEX = FALSE CLUSTERED = FALSE

WUNIT
INDEX = FALSE CLUSTERED = FALSE

VUNIT
INDEX = FALSE CLUSTERED = FALSE

-239-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER-AN IMPLEMENTATION

RELATION SHIPCLASSCARGOCLASS

SHIPCLASS
INDEX = FALSE CLUSTERED =■ FALSE

CARGOCLASS
INDEX = TRUE CLUSTERED TRUE

MAXVOLUHE
INDEX = FALSE CLUSTERED = FALSE

MAXWEIGHT
INDEX =■ FALSE CLUSTERED =■ FALSE

RELATION COUNTRIES

COUNTRYNAME
INDEX = FALSE CLUSTERED = FALSE

COUNTRYABB
INDEX = TRUE CLUSTERED - TRUE

POPULATION
INDEX = FALSE CLUSTERED =■ FALSE

RELATION SHIPS

SHIPNAME
INDEX = TRUE CLUSTERED « FALSE

SHIPID
INDEX = TRUE CLUSTERED = FALSE

SHIPCLASS
INDEX = FALSE CLUSTERED - FALSE

IRCS
INDEX = FALSE CLUSTERED = FALSE

HULLNUMBER
INDEX = FALSE CLUSTERED • FALSE

OWNER
INDEX = TRUE CLUSTERED = TRUE

COUNTRYOFREGISTRY
INDEX = TRUE CLUSTERED = FALSE

LATITUDE
INDEX • FALSE CLUSTERED = FALSE

NORS
INDEX - FALSE CLUSTERED =■ FALSE

LONGITUDE
INDEX - FALSE CLUSTERED = FALSE

EORW
INDEX =■ FALSE CLUSTERED = FALSE

DATEREPORTED
INDEX = FALSE CLUSTERED - FALSE

TIMEREPORTED
INDEX = FALSE CLUSTERED * FALSE

ATPORTORSEA
INDEX « FALSE CLUSTERED => FALSE

RELATION SHIPCLASSES

SHIPTYPE
INDEX = FALSE CLUSTERED - FALSE

SHIPCLASS
INDEX = FALSE CLUSTERED » FALSE

FUELTYPE
INDEX - FALSE CLUSTERED = FALSE

WCAP
INDEX « FALSE CLUSTERED - FALSE

VCAP

-240

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

INDEX = FALSE CLUSTERED » FALSC

CREWSZ
INDEX = FALSE CLUSTERED • FALSE

LIFEBOATCAP
INDEX = FALSE CLUSTERED - FALSE

FUELCAP
INDEX = FALSE CLUSTERED - FALSE

CRUISESPD
INDEX = FALSE CLUSTERED - FALSE

HAXSPD
INDEX = FALSE CLUSTERED - FALSE

FUELCONSATMAX
INDEX = FALSE CLUSTERED - FALSE

FUELCONSATCRUISING
INDEX = FALSE CLUSTERED = FALSE

BEAM
INDEX = FALSE CLUSTERED - FALSE

LENGTH
INDEX = FALSE CLUSTERED - FALSE

MAXDRAFT
INDEX = FALSE CLUSTERED * FALSE

DEADWEIGHT
INDEX = FALSE CLUSTERED - FALSE

RELATION SHIPTYPES

SHIPTYPE
INDEX - TRUE CLUSTERED * TRUE

DESCRIPTION
INDEX = FALSE CLUSTERED = FALSE

RELATION FUELTYPES

FUELTYPE
INDEX = FALSE CLUSTERED = FALSE

PRICE
INDEX = FALSE CLUSTERED = FALSE

UNIT
INDEX « FALSE CLUSTERED " FALSE

-241-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

OPTIMAL ACCESS CONFIGURATION FOR SITUATION 71

TOTALCOST = 2.172586202E+06

RELATION TRACKS

SHIPID
INDEX = FALSE CLUSTERED

VOYAGENUHBER
INDEX » FALSE CLUSTERED

LEGNUMBER
INDEX = FALSE CLUSTERED

DATE
INDEX = FALSE CLUSTERED

TIME
INOEX TRUE CLUSTERED

TRUE

FALSE

FALSE

FALSE

FALSE

COURSE
INDEX = FALSE CLUSTERED = FALSE

SPEED
INDEX = FALSE CLUSTERED =■ FALSE

LATITUDE
INDEX = FALSE CLUSTERED - FALSE

NORS
INDEX = FALSE CLUSTERED = FALSE

LONGITUDE
INDEX = FALSE CLUSTERED = FALSE

EORW
INDEX - FALSE CLUSTERED - FALSE

REPORTER
INDEX - TRUE CLUSTERED • FALSE

SHIPID<-VOYAGENUMBER<-LEGNUMBER
INDEX - TRUE CLUSTERED - TRUE

RELATION CARGOESONBOARD

SHIPID
INDEX = FALSE CLUSTERED

VOYAGENUMBER
INDEX = FALSE CLUSTERED

TRUE

FALSE

LEGNUMBER
INDEX • FALSE CLUSTERED » FALSE

CARGOCLASS
INDEX = FALSE CLUSTERED = FALSE

QUANTITYWEIGHT
INDEX = FALSE CLUSTERED = FALSE

QUANTITYVOLUME
INDEX = FALSE CLUSTERED = FALSE

SHIPID«-VOYAGENUMBER«-LEGNUMBER
INDEX = TRUE CLUSTERED => TRUE

RELATION LOADEDUNLOADFDCARGOES

SHTPID
INDEX = TRUE CLUSTERED =

VOYAGENUMBER
INDEX = FALSE CLUSTERED

STOPNUMBER
INDEX • FALSE CLUSTERED

TRUE

FALSE

FALSE

CARGOCLASS
INDEX = FALSE CLUSTERED » FALSE

LORU
INDEX = FALSE CLUSTERED » FALSE

QTYWGHT
INDEX » FALSE CLUSTERED = FALSE

242-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER-AN IMPLEMENTATION

QTYVOL
INDEX = FALSE CLUSTERED FALSE

SHIPID<-VOYAGENUMBER»-STOPNUMB£R
INDEX = TRUE CLUSTERED • TRUE

RELATION WAREHOUSES

PORTNAHE
INDEX = TRUE CLUSTERED - TRUE

WAREHOUSENUHBER
INDEX - FALSE CLUSTERED = FALSE

CARGOCLASS
INDEX = FALSE CLUSTERED - FALSE

USEDORUNUSED
INDEX = FALSE CLUSTERED - FALSE

QUANTITYWEIGHT
INDEX = FALSE CLUSTERED - FALSE

QUANTITYVOLUME
INDEX = FALSE CLUSTERED - FALSE

RELATION PORTS

PORTNAHE
INDEX = FALSE CLUSTERED =■ FALSE

COUNTRY
INDEX = FALSE CLUSTERED = FALSE

LATITUDE
INDEX = FALSE CLUSTERED = FALSE

NORS
INDEX = FALSE CLUSTERED = FALSE

LONGITUDE
INDEX = FALSE CLUSTERED = FALSE

EORW
INDEX = FALSE CLUSTERED = FALSE

MAXDRAFT
INDEX = FALSE CLUSTERED = FALSE

NUHBEROFDOCKS
INDEX = FALSE CLUSTERED = FALSE

MAXLENGTH
INDEX = FALSE CLUSTERED = FALSE

NUHREROFSHIPSATPORT
INDEX = FALSE CLUSTERED = FALSE

RELATION DOCKS

PORTNAHE
INDEX « TRUE

DOCKNUHBER
INDEX = FALSE

SHIPID
INDEX = FALSE

MAXDRAFT
INDEX = FALSE

MAXLENGTH
INDEX = FALSE

CLUSTERED

CLUSTERED

CLUSTERED

CLUSTERED

CLUSTERED

OCCUPIEDORNOTOCCUPIED
INDEX = FALSE CLUSTERED

PORTNAME<-DOCKNUHBER
INDEX = TRUE CLUSTERED

TRUE

FALSE

FALSE

FALSE

FALSE

FALSE

TRUE

RELATION STOPS

SHIPID

243-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

INDEX TRUE CLUSTERED

VOYAGENUMBER
INDEX - FALSE CLUSTERED

STOPNUM8ER
INDEX => FALSE CLUSTEREO

PORTNAME
INDEX = FALSE CLUSTERED

ARRIVALDATE
INDEX = FALSE CLUSTERED

ARRIVALTIME
INDEX = FALSE CLUSTERED

TRUE

FALSE

FALSE

FALSE

FALSE

FALSE

DEPARTUREDATE
INDEX = FALSE CLUSTERED = FALSE

DEPARTURETIHE
INDEX = FALSE CLUSTERED =■ FALSE

DOCKNUMBER
INDEX = FALSE CLUSTERED - FALSE

SHIPID<-VOYAGENUHBER
INDEX = TRUE CLUSTERED =■ TRUE

SHIPIO<-VOYAGENUMBER<-STOPNUMBER
INDEX = TRUE CLUSTERED = FALSE

PORTNAME«-DOCKNUMBER
INDEX = FALSE CLUSTERED = FALSE

RELATION LEGS

SHIPID
INDEX = TRUE CLUSTERED TRUE

VOYAGENUMBER
INDEX = FALSE CLUSTERED » FALSE

LEGNUMBER
INDEX - FALSE CLUSTERED =■ FALSE

SOURCESTOP
INDEX = FALSE CLUSTERED - FALSE

DESTINATIONSTOP
INDEX = FALSE CLUSTERED - FALSE

SHIPID<-VOYAGENUMBER
INDEX = TRUE CLUSTERED « TRUE

SHIPID<-VOYAGENUMBER«-LEGNUMBER
INDEX = TRUE CLUSTERED = FALSE

SHIPID<-VOYAGENUMBER«-SOURCESTOP
INDEX » FALSE CLUSTERED = FALSE

SHIPID<-VOYAGENUMBER«-DESTINATIONSTOP
INDEX = FALSE CLUSTERED = FALSE

RELATION VOYAGES

SHIPID
INDEX • TRUE CLUSTERED =■ FALSE

VOYAGENUMBER
INDEX = FALSE CLUSTERED = FALSE

CHARTERER
INDEX - TRUE CLUSTERED =■ TRUE

SHIPID«-VOYAGENUMBER
INDEX - TRUE CLUSTERED - FALSE

RELATION CARGOCLASSES

CARGOCLASS
INDEX = FALSE CLUSTERED « FALSE

WUNIT
INDEX » FALSE CLUSTERED = FALSE

VUNIT

-244

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER-AN IMPLEMENTATION

INDEX = FALSE CLUSTERED ■= FALSE

RELATION SHIPCLASSCARGOCLASS

SHIPCLASS
INDEX = FALSE CLUSTERED - FALSE

CARGOCLASS
INDEX - FALSE CLUSTERED - FALSE

MAXVOLUME
INDEX = FALSE CLUSTERED = FALSE

MAXWEIGHT
INDEX = FALSE CLUSTERED - FALSE

RELATION COUNTRIES

COUNTRYNAME
INDEX • FALSE CLUSTERED « FALSE

COUNTRYABB
INDEX - TRUE CLUSTERED = TRUE

POPULATION
INDEX = FALSE CLUSTERED = FALSE

RELATION SHIPS

SHIPNAHE
INDEX * TRUE CLUSTERED • FALSE

SHIPID
INDEX = TRUE CLUSTERED = FALSE

SHIPCLASS
INDEX = FALSE CLUSTERED » FALSE

IRCS
INDEX = FALSE CLUSTERED = FALSE

HULLNUMBER
INDEX = FALSE CLUSTERED = FALSE

OWNER
INDEX = TRUE CLUSTERED - TRUE

COUNTRYOFREGISTRY
INDEX = TRUE CLUSTERED = FALSE

LATITUDE
INDEX - FALSE CLUSTERED = FALSE

NORS
INDEX = FALSE CLUSTERED » FALSE

LONGITUDE
INDEX « FALSE CLUSTERED « FALSE

EORW
INDEX - FALSE CLUSTERED « FALSE

DATEREPORTED
INDEX « FALSE CLUSTERED = FALSE

TIMEREPORTED
INDEX - FALSE CLUSTERED = FALSE

ATPORTORSEA
INDEX - FALSE CLUSTERED = FALSE

RELATION SHIPCLASSES

SHIPTYPE
INDEX - FALSE CLUSTERED - FALSE

SHIPCLASS
INDEX = FALSE CLUSTERED = FALSE

FUELTYPE
INDEX = FALSE CLUSTERED = FALSE

WCAP
INDEX - FALSE CLUSTERED - FALSE

-245-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER- AN IMPLEMENTATION

VCAP
INDEX = FALSE CLUSTERED =■ FALSE

CREWSZ
INDEX = FALSE CLUSTERED = FALSE

LIFEBOATCAP
INDEX = FALSE CLUSTERED =■ FALSE

FUELCAP
INDEX • FALSE CLUSTERED =■ FALSE

CRUISESPD
INDEX ' FALSE CLUSTERED - FALSE

HAXSPD
INDEX =■ FALSE CLUSTERED =■ FALSE

FUELCONSATMAX
INDEX = FALSE CLUSTERED =■ FALSE

FUELCONSATCRUISING
INDEX = FALSE CLUSTERED » FALSE

BEAM
INDEX = FALSE CLUSTERED » FALSE

LENGTH
INDEX =■ FALSE CLUSTERED = FALSE

MAXDRAFT
INDEX = FALSE CLUSTERED =■ FALSE

DEADWEIGHT
INDEX = FALSE CLUSTERED = FALSE

RELATION SHIPTYPES

SHIPTYPE
INDEX =■ TRUE CLUSTERED = TRUE

DESCRIPTION
INDEX = FALSE CLUSTERED =■ FALSE

RELATION FUELTYPES

FUELTYPE
INDEX = FALSE CLUSTERED - FALSE

PRICE
INDEX =■ FALSE CLUSTERED » FALSE

UNIT
INDEX = FALSE CLUSTERED =■ FALSE

-246-

APPENDIX K. TUE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

OPTIMAL ACCESS CONFIGURATION FOR SITUATION 72

TOTALCOST = 8.861027836E+05 NOT CORRECT IF STEP1C0ST WAS USED

RELATION TRACKS

SHIPID
INDEX * FALSE CLUSTERED = TRUE

VOYAGENUMBER
INDEX * FALSE CLUSTERED •= FALSE

LEGNUMBER
INDEX = FALSE CLUSTERED » FALSE

DATE
INDEX = FALSE CLUSTERED - FALSE

TIME
INDEX = FALSE CLUSTERED =■ FALSE

COURSE
INDEX = FALSE CLUSTERED

SPEED
INDEX FALSE CLUSTERED

LATITUDE
INDEX = FALSE CLUSTERED

NORS
INDEX = FALSE CLUSTERED

FALSE

FALSE

FALSE

FALSE

LONGITUDE
INDEX = FALSE CLUSTERED = FALSE

EORW
INDEX = FALSE CLUSTERED = FALSE

REPORTER
INDEX = FALSE CLUSTERED = FALSE

SHIPID<-VOYAGENUMBER«-LEGNUMBER
INDEX = TRUE CLUSTERED « TRUE

RELATION CARGOESONBOARD

SHIPID
INDEX = FALSE CLUSTERED = TRUE

VOYAGENUMBER
INDEX = FALSE CLUSTERED = FALSE

LEGNUMBER
INDEX = FALSE CLUSTERED = FALSE

CARGOCLASS
INDEX = FALSE CLUSTERED = FALSE

QUANTITYWEIGHT
INDEX = FALSE CLUSTERED = FALSE

QUANTITYVOLUME
INDEX = FALSE CLUSTERED = FALSE

SHIPID«-VOYAGENUMBER<-LEGNUMBER
INDEX = TRUE CLUSTERED = TRUE

RELATION LOADEDUNLOADEDCARGOES

TRUE
SHIPID
INDEX = FALSE CLUSTERED =

VOYAGENUMBER
INDEX = FALSE CLUSTERED = FALSE

STOPNUMBER
INDEX = FALSE CLUSTERED « FALSE

CARGOCLASS
INDEX = FALSE CLUSTERED = FALSE

LORU
INDEX = FALSE CLUSTERED = FALSE

QTYWGHT
INDEX = FALSE CLUSTERED = FALSE

247-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

QTYVOL
INDEX ■ FALSE CLUSTERED FALSE

SHIPID<-VOYAGENUMBER«-STOPNUMBER
INDEX = TRUE CLUSTERED = TRUE

RELATION WAREHOUSES

PORTNAME
INDEX = TRUE CLUSTERED

WAREHOUSENUMBER
INDEX = FALSE CLUSTERED -

CARGOCLASS
INDEX = FALSE CLUSTERED »

USEDORUNUSED
INDEX .- FALSE CLUSTERED "

QUANTITYWEIGHT
INDEX « FALSE CLUSTERED »

QUANTITYVOLUME
INDEX = FALSE CLUSTERED »

TRUE

FALSE

FALSE

FALSE

FALSE

FALSE

RELATION PORTS

PORTNAME
INDEX = FALSE CLUSTERED - FALSE

COUNTRY
INDEX = FALSE CLUSTERED = FALSE

LATITUDE
INDEX = FALSE CLUSTERED = FALSE

NORS
INDEX - FALSE CLUSTERED - FALSE

LONGITUDE
INDEX - FALSE CLUSTERED » FALSE

EORW
INDEX = FALSE CLUSTERED = FALSE

MAXDRAFT
INDEX « FALSE CLUSTERED » FALSE

NUMBEROFDOCKS
INDEX = FALSE CLUSTERED * FALSE

MAXtENGTH
INDEX - FALSE CLUSTERED - FALSE

NUMBEROFSHIPSATPORT
INDEX = FALSE CLUSTERED > FALSE

RELATION DOCKS

PORTNAME
INDEX = FALSE CLUSTERED = TRUE

DOCKNUMBER
INDEX = FALSE CLUSTERED » FALSE

SHIPID
INDEX - FALSE CLUSTERED - FALSE

MAXDRAFT
INDEX - FAISE CLUSTERED = FALSE

MAXLENGTH
INDEX = FALSE CLUSTERED - FALSE

OCCUPIEDORNOTOCCUPIED
INDEX = FALSE CLUSTERED = FALSE

PORTNAME<-DOCKNUMBER
INDEX = TRUE CLUSTERED - TRUE

RELATION

SHIPID

STOPS

-248

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

INDEX = FALSE CLUSTERED - TRUE

VOYAGENUHBER
INDEX = FALSE CLUSTERED - FALSE

STOPNUMBER
INDEX = FALSE CLUSTERED - FALSE

PORTNAME
INDEX = FALSE CLUSTERED = FALSE

ARRIVALDATE
INDEX = FALSE CLUSTERED - FALSE

ARRIVALTIME
INDEX = FALSE CLUSTERED = FALSE

DEPARTUREDATE
INDEX = FALSE CLUSTERED - FALSE

DEPARTURETIME
INDEX = FALSE CLUSTERED = FALSE

DOCKNUMBER
INDEX = FALSE CLUSTERED = FALSE

SHIPID<-VOYAGENUMBER
INDEX - FALSE CLUSTERED = FALSE

SHIPID*-VOYAGENUMBER«-STOPNUMBER
INDEX = TRUE CLUSTERED = TRUE

PORTNAME<-DOCKNUMBER
INDEX = FALSE CLUSTERED = FALSE

RELATION LEGS

SHIPID
INDEX = FALSE CLUSTERED = TRUE

VOYAGENUHBER
INDEX = FALSE CLUSTERED = FALSE

LEGNUMBER
INDEX * FALSE CLUSTERED ■= FALSE

SOURCESTOP
INDEX = FALSE CLUSTERED = FALSE

DESTINATIONSTOP
INDEX = FALSE CLUSTERED « FALSE

SHIPID»-VOYAGENUMBER
INDEX - FALSE CLUSTERED = FALSE

SHIPID*-VOYAGENUMBER<-LEGNUMBER
INDEX - TRUE CLUSTERED = TRUE

SHIPID<-VOYAGENUMBER-SOURCESTOP
INDEX = FALSE CLUSTERED = FALSE

SHIPID<-VOYAGENUMBER»-DESTINATIONSTOP
INDEX = FALSE CLUSTERED = FALSE

RELATION VOYAGES

SHIPID
INDEX = FALSE CLUSTERED = TRUE

VOYAGENUMBER
INDEX = FALSE CLUSTERED « FALSE

CHARTERER
INDEX = FALSE CLUSTERED = FALSE

SHIPID<-VOYAGENUMBER
INDEX = TRUE CLUSTERED = TRUE

RELATION CARGOCLASSES

CARGOCLASS
INDEX = FALSE CLUSTERED FALSE

WUNIT
INDEX = FALSE CLUSTERED = FALSE

VUNIT

249-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

INDEX = FALSE CLUSTERED =■ FALSE

RELATION SHIPCLASSCARGOCLASS

SHIPCLASS
INDEX = FALSE CLUSTERED =■ FALSE

CARGOCLASS
INDEX « FALSE CLUSTERED =■ FALSE

HAXVOLUHE
INDEX = FALSE CLUSTERED =■ FALSE

MAXUEIGHT
INDEX = FALSE CLUSTERED = FALSE

RELATION COUNTRIES

COUNTRYNAHE
INDEX = FALSE CLUSTERED = FALSE

COUNTRYABB
INDEX = TRUE CLUSTERED = TRUE

POPULATION
INDEX = FALSE CLUSTERED = FALSE

RELATION SHIPS

SHIPNAME
INDEX = FALSE CLUSTERED = FALSE

SHIPID
INDEX » TRUE CLUSTERED * TRUE

SHIPCLASS
INDEX = FALSE CLUSTERED =■ FALSE

IRCS
INDEX = FALSE CLUSTERED = FALSE

HULLNUMBER
INDEX = FALSE CLUSTERED = FALSE

OWNER
INDEX = FALSE CLUSTERED = FALSE

COUNTRYOFREGISTRY
INDEX = FALSE CLUSTERED = FALSE

LATITUDE
INDEX = FALSE CLUSTERED = FALSE

NORS
INDEX = FALSE CLUSTERED = FALSE

LONGITUDE
INDEX » FALSE CLUSTERED = FALSE

EORW
INDEX • FALSE CLUSTERED = FALSE

DATEREPORTED
INDEX « FALSE CLUSTERED = FALSE

TIMEREPORTEO
INDEX = FALSE CLUSTERED = FALSE

ATPORTORSEA
INDEX = FALSE CLUSTERED = FALSE

RELATION SHIPCLASSES

SHIPTYPE
INDEX = FALSE CLUSTERED =■ FALSE

SHIPCLASS
INDEX « FALSE CLUSTERED = FALSE

FUELTYPE
INDEX = FALSE CLUSTERED = FALSE

WCAP
INDEX = FALSE CLUSTERED = FALSE

-250-

APPENDIX K. THE PHYSICAL DATABASE DESIGN OPTIMIZER - AN IMPLEMENTATION

VCAP
INDEX = FALSE CLUSTERED - FALSE

CREWSZ
INDEX = FALSE CLUSTERED = FALSE

LIFEBOATCAP
INDEX - FALSE CLUSTERED • FALSE

FUELCAP
INDEX - FALSE CLUSTERED ■ FALSE

CRUISESPD
INDEX =■ FALSE CLUSTERED - FALSE

HAXSPD
INDEX = FALSE CLUSTERED - FALSE

FUELCONSATMAX
INDEX = FALSE CLUSTERED = FALSE

FUELCONSATCRUISING
INDEX = FALSE CLUSTERED - FALSE

BEAM
INDEX = FALSE CLUSTERED - FALSE

LENGTH
INDEX « FALSE CLUSTERED ' FALSE

MAXDRAFT
INDEX = FALSE CLUSTERED - FALSE

DEADWEIGHT
INDEX = FALSE CLUSTERED - FALSE

RELATION SHIPTYPES

SHIPTYPE
INDEX - FALSE CLUSTERED FALSE

DESCRIPTION
INDEX = FALSE CLUSTERED = FALSE

RELATION FUELTYPES

FUELTYPE
INDEX = FALSE CLUSTERED = FALSE

PRICE
INDEX = FALSE CLUSTERED = FALSE

UNIT
INDEX = FALSE CLUSTERED = FALSE

Figure K-8: Situations 70, 71,72, and their optimal solutions.

251-

REFERENCES

References

[AND 77] Anderson, H. D., Berra, P. B.
Minimum Cost Selection of Secondary Indexes for Formatted Files.
ACM Trans. Database Systems 2(l):68-90, March, 1977.

[AST 76] Astrahan, M. M. et al.
System R: Relational Approach to Database Management
ACM Trans. Database Systems 1(2):97-137, June, 1976.

[AST 80] Astrahan, M. M. et al.
Performance of the System R Access Path Selection Mechanism.
Information Processing :487-491,1980.
IFIP, North-Holland Publishing Co.

[BAT 80] Batory, D. S. and Gotlieb, C. C.
A Unifying Model of Physical Databases.
Technical Report CSRG-109, Computer Systems Research Group, University of

Toronto, April, 1980.

[BAT 82] Batory, D. S. and Gotlieb, C. C.
A Unifying Model of Physical Databases.
ACM Trans. Database Systems 7(4):509-539, December, 1982.

[BAY 72] Bayer, R. and McCreight, E.
Organization and Maintenance of Large Ordered Indices.
Ada Infonnatica 1,1972.

[BER81] Berstein, P. A. et al.
Query Processing in a System for Distributed Databases (SDDT).
ACM Trans. Database Systems 6(4):602-625, December, 1981.

[BLA 76] Blasgen, M. W. and Eswaren, K. P.
On the Evaluation of Queries in a Database System.
IBM Research Report RJ1945, IBM, San Jose, Calif., April, 1976.

[BRO 82] Brodie, M. and Schmidt, J.
Final Report of the ANSI/X3/SPARC DBS-SG Relational Database Task Group.
Sigmod Record 12(4): 1-62, July, 1982.

[CAR 75] Cardenas, A. F.
Analysis and Performance of Inverted Database Structures.
Comm. ACM 18(5):253-263, May, 1975.

[CHA76] Chamberlin,D.D.,etal. ;'
SEQUEL2: A Unified Approach to Data Definition, Manipulation, and Control.
1BMJ. Res. andDevei 20(6):560-575, November, 1976.

252-

REFERENCES

[COD 70] Codd.RF.
A Relational Model of Data for Large Shared Data Banks.
Comm. ACM 13(6):377-387, June, 1970.

[COD 71] CODASYL
Data Base Task Group Report.
ACM, New York, 1971.

i ■

[COD-a 78] CODASYL Data Description Language Committee.
Journal of Development
EDP Standards Committee, Secretariat of Canadian Government, Canada, 1978.

[COD-b 78] CODASYL Cobol Committee.
Journal of Development.
EDP Standard Committee, Secretariat of Canadian Government, Canada, 1978.

[COM 78] Comer, D.
The Difficulty of Optimum In'dex Selection.
ACM Trans. Database Systems 3(4):440-445, December, 1978.

[COM 79] Comer, D.
The Ubiquitous B-Tree.
ACM Trans. Database Systems 11(2): 121-137, June, 1979.

[DE 78] De, Petal.
Towards an Optimal Design of a Network Database from Relation Descriptions.
Operations Research 26(5):805-823, SepL-Oct., 1978.

[DEC 78] DECsystem-10/DECSYSTEM-20 Hardware Reference Manual- Central Processor
Digital Equipment Corporation, 1978.

[DEM 80] Demolombe, R.
Estimation of the Number of Tuples Satisfying a Query Expressed in Predicate

Calculus Language.
In Proc. Intl. Conf. on Very Large Databases, pages 55-63. Montreal, Canada,

1980.

[ELM 80] El-Masri, R. and Wiedcrhold G.
Properties of Relationships and Their Representation.
In Natl. Computer Conf, pages 191-192. AFIPS, Vol. 49, May, 1980.

[FEL 66] Fcldman, E, et al.
Warehouse Location Under Continuous Economies of Scale.
Management Science 12(9): 670-684, July, 1966.

[FIN 82] Finkelstein, S. J. et al.
DBDSGN - A Physical Database Design Tool for System R.
Database Engineering 5(1):9-11, March, 1982.
IEEE Computer Society.

-253

REFERENCES

[GAM 77] Gambino, T. J. and Gerritsen, R.
A Database Design Decision Support System.
In Proc. Intl. Conf. on Very Large Databases, pages 534-544. Tokyo, Japan, IEEE,

October, 1977.

[GER 76] Gerritsen, R. et al.
WAND User's Guide.
Decision Sciences Working Paper 76-01-03, Wharton School, Univ. of

Pennsylvania, 1976.

[GER 77] Gerritsen, R. et al.
Cost Effective Databse Design: An Integrated Model.
Decision Sciences Working Paper 77-12-03, Wharton School, Univ. of

Pennsylvania, 1977.

[GOO 79] Goodman, N. et al.
Query Processing in SDD-1: A System for Distributed Databases.
Technical Report, Computer Corporation of America, 1979.

[GOT 75] Gotlieb.L.
Computing Joins of Relations.
In Proc. Intl. Conf. on Management of Data, pages 55-63. San Jose, Calif., May,

1975.

[HAM 76] Hammer, M. and Chan, A.
Index Selection in a Self-Adaptive Database Management System.
In Proc. Intl. Conf. on Management of Data, pages 1-8. Washington, DC, ACM

SIGMOD, June, 1976.

[HEV79] Hevner,A.R.,andYao,S.B.
Query Processing in Distributed Database Systems.
IEEE Trans. Software Eng. SE-5:177-187, May, 1979.

[HON 71] Honeywell Information Systems Inc.
Integrated Data Store
1971.

[HSI70] Hsiao, D. and Harary, F.
A Formal System for Information Retrieval from Files.
Comm. ACM 13(4):67-73, February, 1970.
Also see Comm. ACM 13,4, April 1070, p.266.

[IBM 70] IBM.
System 360 Scientific Subroutine Package
1970.

[KAT80] Katz, R. H. and Wong, E.
An Access Path Model for Physical Database Design.
In Proc. Intl. Conf on Management of Data, pages 22-29. Santa Monica, Calif.,

ACM SIGMOD, May, 1980.

254-

REFERENCES

[KEL81] Keller, A. M.
Updates to Relational Databases Through Views Involving Joins.
IBM Research Report RJ3282, IBM, San Jose, Calif., October, 1981.

[KIM 79] Kim, W.
Relational Database Systems.
ACM Computing Surveys 11(3): 185-212, September, 1979.

t

[KIM 82] Kim,W.
On Optimizing an SQL-like Nested Query.
ACM Trans. Database Systems 7(3):443-469, September, 1982.

[KIN 74] King, W. F.
On the Selection of Indices for a File.
IBM Research Report RJ1341, IBM, San Jose, Calif., 1974.

[KNU-a73] Knuth.D.
The Art of Computer Programming- Fundamental Algorithms.
Addeson-Wesley, 1973.

[KNU-b 73] Knuth, D.
The Art of Computer Programming-Soring and Searching.
Addison-Wesley, 1973.

[KOO 82] Kooi, R. and Frankforth, D.
Query Optimization in INGRES.
Database Engineering 5(3):2-5, September, 1982.
IEEE Computer Society.

[KUE 63] Kuehn, A. A. and Hamburger, M. J.
A Heuristic Program for Locating Warehouses.
Management Science 10:643-657, July, 1963.

[LUK 83] Luk, W. S.
On Estimating Block Accesses in Database Organizations.
Comm. /1CM26.1983.

[LUM 71] Lum, V. Y. and Ling, H.
An Optimization Problem of the Selection of Secondary Keys.
In ACM Nail. Conf, pages 349-356. ACM, 1971.

[LUM 78] Lum,V.ctal.
1978 New Orleans Data Base Design Workshop Report.
IBM Research Report RJ2554, IBM, San Jose, Calif., July, 1978.

[MIT 75] Mitoma, M. F. and Irani, K. B.
Automatic Data Base Schema Design and Optimization.
In Proc. Intl. Conf. on Very Large Databases. Framingham, Mass., September,

1975.

-255-

REFERENCES

[PEC 75] Pecherer, R. M.
Efficient Evaluation of Expression in a Relational Algebra.
In ACM Pacific 75 Regional Conference, pages 44-49. San Francisco, April, 1975.

[ROT 74] Rothnie, J. B. and Lozano, T.
Attribute Based File Organization in a Paged Memory Environment
Comm. ACM 17(2):63-69, February, 1974.

[SCH 75] Schkolnick, M.
The Optimal Selection of Secondary Indices for Files.
Information Systems 1:141-146, March, 1975.

[SCH 79] Schkolnick, M. and Tiberio, P.
Considerations in Developing a Design Tool for a Relational DBMS.
In Proc. Intl. Comp. Soft. & AppL Conf, pages 228-235. Chicago, IEEE,

November, 1979.

[SCH 81] Schkolnick, M. and Tiberio, P'.
A Note on Estimating the Maintenance Cost in a Relational Database.
IBM Research Report RJ3327, IBM, San Jose, Calif., December, 1981.

[SEL 79] Selinger, P. G. et al.
Access Path Selection in a Relational Database Management System.
In Proc. Intl. Conf. on Management of Data, pages 23-34. Boston, Mass., May,

1979.

[SEN 69] Senko,M.E.,etal.
File Design Handbook
IBM San Jose Research Laboratory, 1969.

[SEV 72] Severance, D. G.
Some Generalized Modeling Structures for Use in Design of File Organizations.
PhD thesis, University of Michigan, Ann Arbor, Mich., 1972.

[SEV 75] Severance, D. G.
A Parametric Model of Alternative File Structures.
Information Systems 1(2): 51-55,1975.

[SEV 77] Severance, D. G. and Carlis, J. V.
A Practical Approach to Selecting Record Access Paths.
ACM Computing Surveys 9(4):259-272, December, 1977.

[S1L76] Siler,K.F.
A Stochastic Evaluation Model for Database Organizations in Data Retrival

Systems.
Comm. ACM 19(2):84-95, February, 1976.

[SMI 75] Smith, J. and Chang, P.
Optimizing the Performance of a Relational Algebra Database Interface.
Comm. ACM 18(10):568-579, October, 1975.

-256

REFERENCES

[ST0 74] Stonebraker, M.
The Choice of Partial Inversions and Combined Indices.
Int. Journal of Computer Information Sciences 3(2): 167-188,1974.

[STO 76] Stonebraker, M. et al.
The Design and Implementation of INGRES.
ACM Trans. Database Systems 1(3): 189-222, September, 1976.

t

[TEO 78] Teorey, T. J. and Oberlander, L. B.
Network Database Evaluation Using Analytical Modelling.
In Natl. Computer Conf. AFIPS, Anaheim, Calif., Vol. 47,1978.

[ULL82] UllmanJ.
Principles of Database Systems.
Computer Science Press, Potomac, Maryland, 1982.

[VVAT 72] Waters, S.J.
File Design Fallacies.
The Computer Journal15(l):l-4,1972.

[WAT 75] Waters, S. J.
Estimating Magnetic Disc Seeks.
The Computer Journal 18(1):12-17,1975.

[WAT 76] Waters, S.J.
Hit Ratios.
The Computer Journal 19(l):21-24,1976.

[WHA-a 81] Whang, K., Wiederhold, G., and Sagalowicz, D.
Separability: An Approach to Physical Database Design.
In Proc. Intl. Conf. on Very Large Databases, pages 320-332. Cannes, France,

IEEE, September, 1981.

[WHA-a 82] Whang, K., Wiederhold, G., Sagalowicz, D.
Estimating Block Accesses in Database Organizations- A Closed Noniterative

Formula.
, to appear in the Communications of the ACM (accepted), 1982.

[WHA-b 81] Whang, K., Wiederhold, G., Sagalowicz, D.
Separability as an Approach to Physical Database Design.
Technical Report STAN-CS-81-898, Stanford University, October, 1981.
Also numbered as CSL TR-222.

[WHA-b 82] Whang, K., Wiederhold, G., and Sagalowicz, D.
Physical Design of Network Model Databases Using the Property of Separability.
In Proc. Intl. Conf. on Very Large Databases, pages 98-107. Mexico City, Mexico,

September, 1982.

-257-

REFERENCES

[WIE 79] Wiedcrhold, G. and El-Masri, R.
The Structural Model for Database Design.
In Proc. Intl. Conf. on Entity Relationship Approach, pages 247-267. Los Angeles,

Calif., December, 1979.

[WIE 83] Wiederhold, G.
Database Design.
McGraw-Hill Book Company, New York, 1983.
second edition.

[WON 76] Wong, E. and Youseffi, K.
Decomposition-A Strategy for Query Processing.
ACM Trans. Database Systems 1(3):223-241, September, 1976.

[YA0 78] Yao,S.B.andDeJong,D.
Evaluation of Database Access Paths.
In Proc. Intl. Conf. on Management of Data, pages 66-67. Austin, Texas, ACM

SIGMOD, June, 1978.

[YA0 79] Yao,S.B.
Optimization of Query Evaluation Algorithm.
ACM Trans. Database Systems 4(2): 133-155, June, 1979.

[YAO-a77] Yao, S. B.
An Attribute Based Model for Database Access Cost Analysis.
ACM Trans. Database Systems 2(l):45-67, March, 1977.

[YAO-b 77] Yao, S. B.
Approximating Block Accesses in Database Organizations.
Comm. /fCA/20(4):260-261,1977.

[YUE75] Yue, P. C. and Wong, C. K.
Storage Cost Considerations in Secondary Index Selection.
International Journal of Computer and Information Sciences 4(4): 307-327,1975.

-258-

Reproduced by NTIS

.t: O"ö a)
T3 t S> >

ü£üO

Si»'«

0 « 0 ü)

- C u "
£ 0 o C
EEuO
C 0) 3 9
0) Ü 0^

02£ü

TJ C fl) c

WS g«g

z5<2.E

National Technical Information Service
Springfield, VA 22161

This report was printed specifically for your order
from nearly 3 million titles available in our collection.

For economy and efficiency, NTIS does not maintain stock of its vast
collection of technical reports. Rather, most documents are printed for
each order. Documents that are not in electronic format are reproduced
from master archival copies and are the best possible reproductions
available. If you have any questions concerning this document or any
order you have placed with NTIS, please call our Customer Service
Department at (703) 487-4660.

About NTIS
NTIS collects scientific, technical, engineering, and business related
information — then organizes, maintains, and disseminates that
information in a variety of formats — from microfiche to online services.
The NTIS collection of nearly 3 million titles includes reports describing
research conducted or sponsored by federal agencies and their
contractors; statistical and business information; U.S. military
publications; audiovisual products; computer software and electronic
databases developed by federal agencies; training tools; and technical
reports prepared by research organizations worldwide. Approximately
100,000 new titles are added and indexed into the NTIS collection
annually.

For more information about NTIS products and services, call NTIS
at (703) 487-4650 and request the free NTIS Catalog of Products

and Services, PR-827LPG, or visit the NTIS Web site
http://www.ntis.gov.

NTIS
Your indispensable resource for government-sponsored

information—U.S. and worldwide

